Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rayon (Rust Belt Rust)
Search
nikomatsakis
October 28, 2016
Programming
7
1.1k
Rayon (Rust Belt Rust)
A talk about Rayon from the Rust Belt Rust conference
nikomatsakis
October 28, 2016
Tweet
Share
More Decks by nikomatsakis
See All by nikomatsakis
Hereditary Harrop Formulas (Papers We Love Boston)
nikomatsakis
2
480
Rust: Systems Programming for All!
nikomatsakis
0
180
CppNow 2017
nikomatsakis
0
210
Rust at Mozilla (part of Mozilla Onboarding)
nikomatsakis
0
170
Guaranteeing Memory Safety and Data-Race Freedom in Rust
nikomatsakis
0
250
Other Decks in Programming
See All in Programming
JJUG CCC 2025 Fall: Virtual Thread Deep Dive
ternbusty
3
410
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
280
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
190
Inside of Swift Export
giginet
PRO
1
560
オフライン対応!Flutterアプリに全文検索エンジンを実装する @FlutterKaigi2025
itsmedreamwalker
2
210
組織もソフトウェアも難しく考えない、もっとシンプルな考え方で設計する #phpconfuk
o0h
PRO
10
4.3k
flutter_kaigi_2025.pdf
kyoheig3
1
330
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
290
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
990
KoogではじめるAIエージェント開発
hiroaki404
1
480
Amazon Bedrock Knowledge Bases Hands-on
konny0311
0
150
CSC509 Lecture 11
javiergs
PRO
0
310
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Six Lessons from altMBA
skipperchong
29
4.1k
Designing Experiences People Love
moore
142
24k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
GraphQLとの向き合い方2022年版
quramy
49
14k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
24
1.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
A Tale of Four Properties
chriscoyier
162
23k
Transcript
Rayon Data Parallelism for Fun and Profit Nicholas Matsakis (nmatsakis
on IRC)
Want to make parallelization easy 2 fn load_images(paths: &[PathBuf]) ->
Vec<Image> { paths.iter() .map(|path| Image::load(path)) .collect() } fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path)) .collect() } For each path… …load an image… …create and return a vector.
Want to make parallelization safe 3 fn load_images(paths: &[PathBuf]) ->
Vec<Image> { let mut pngs = 0; paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs += 1; } Image::load(path) }) .collect() } Data-race Will not compile
4 http://blog.faraday.io/saved-by-the-compiler-parallelizing-a-loop-with-rust-and-rayon/
5 Parallel Iterators join() threadpool Basically all safe Safe interface
Unsafe impl Unsafe
6 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.iter() .map(|path| Image::load(path))
.collect() }
7 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path))
.collect() }
Not quite that simple… 8 (but almost!) 1. No mutating
shared state (except for atomics, locks). 2. Some combinators are inherently sequential. 3. Some things aren’t implemented yet.
9 fn load_images(paths: &[PathBuf]) -> Vec<Image> { let mut pngs
= 0; paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs += 1; } Image::load(path) }) .collect() } Data-race Will not compile
10 `c` not shared between iterations! fn increment_all(counts: &mut [u32])
{ for c in counts.iter_mut() { *c += 1; } } fn increment_all(counts: &mut [u32]) { paths.par_iter_mut() .for_each(|c| *c += 1); }
fn load_images(paths: &[PathBuf]) -> Vec<Image> { let pngs = paths.par_iter()
.filter(|p| p.ends_with(“png”)) .map(|_| 1) .sum(); paths.par_iter() .map(|p| Image::load(p)) .collect() } 11
12 But beware: atomics introduce nondeterminism! use std::sync::atomic::{AtomicUsize, Ordering}; fn
load_images(paths: &[PathBuf]) -> Vec<Image> { let pngs = AtomicUsize::new(0); paths.par_iter() .map(|path| { if path.ends_with(“png”) { pngs.fetch_add(1, Ordering::SeqCst); } Image::load(path) }) .collect() }
13 3 2 1 12 0 4 5 1 2
1 3 2 1 0 1 3 4 0 3 6 7 8 vec1 vec2 6 2 6 * sum 8 82 fn dot_product(vec1: &[i32], vec2: &[i32]) -> i32 { vec1.iter() .zip(vec2) .map(|(e1, e2)| e1 * e2) .fold(0, |a, b| a + b) // aka .sum() }
14 fn dot_product(vec1: &[i32], vec2: &[i32]) -> i32 { vec1.par_iter()
.zip(vec2) .map(|(e1, e2)| e1 * e2) .reduce(|| 0, |a, b| a + b) // aka .sum() } 3 2 1 12 0 4 5 1 2 1 3 2 1 0 1 3 4 0 3 6 7 8 vec1 vec2 sum 20 19 43 39 82
15 Parallel iterators: Mostly like normal iterators, but: • closures
cannot mutate shared state • some operations are different For the most part, Rust protects you from surprises.
16 Parallel Iterators join() threadpool
The primitive: join() 17 rayon::join(|| do_something(…), || do_something_else(…)); Meaning: maybe
execute two closures in parallel. Idea: - add `join` wherever parallelism is possible - let the library decide when it is profitable
18 fn load_images(paths: &[PathBuf]) -> Vec<Image> { paths.par_iter() .map(|path| Image::load(path))
.collect() } Image::load(paths[0]) Image::load(paths[1])
Work stealing 19 Cilk: http://supertech.lcs.mit.edu/cilk/ (0..22) Thread A Thread B
(0..15) (15..22) (1..15) (queue) (queue) (0..1) (15..22) (15..18) (18..22) (15..16) (16..18) “stolen” (18..22) “stolen”
20
21 Parallel Iterators join() threadpool Rayon: • Parallelize for fun
and profit • Variety of APIs available • Future directions: • more iterators • integrate SIMD, array ops • integrate persistent trees • factor out threadpool
22 Parallel Iterators join() scope() threadpool
23 the scope `s` task `t1` task `t2` rayon::scope(|s| {
… s.spawn(move |s| { // task t1 }); s.spawn(move |s| { // task t2 }); … });
rayon::scope(|s| { … s.spawn(move |s| { // task t1 s.spawn(move
|s| { // task t2 … }); … }); … }); 24 the scope task t1 task t2
`not_ok` is freed here 25 the scope task t1 let
ok: &[u32]s = &[…]; rayon::scope(|scope| { … let not_ok: &[u32] = &[…]; … scope.spawn(move |scope| { // which variables can t1 use? }); });
26 fn join<A,B>(a: A, b: B) where A: FnOnce() +
Send, B: FnOnce() + Send, { rayon::scope(|scope| { scope.spawn(move |_| a()); scope.spawn(move |_| b()); }); } (Real join avoids heap allocation)
27 struct Tree<T> { value: T, children: Vec<Tree<T>>, } impl<T>
Tree<T> { fn process_all(&mut self) { process_value(&mut self.value); for child in &mut self.children { child.process_all(); } } }
28 impl<T> Tree<T> { fn process_all(&mut self) where T: Send
{ rayon::scope(|scope| { for child in &mut self.children { scope.spawn(move |_| child.process_all()); } process_value(&mut self.value); }); } }
29 impl<T> Tree<T> { fn process_all(&mut self) where T: Send
{ rayon::scope(|scope| { let children = &mut self.children; scope.spawn(move |scope| { for child in &mut children { scope.spawn(move |_| child.process_all()); } }); process_value(&mut self.value); }); } }
30 impl<T: Send> Tree<T> { fn process_all(&mut self) { rayon::scope(|s|
self.process_in(s)); } fn process_in<‘s>(&’s mut self, scope: &Scope<‘s>) { let children = &mut self.children; scope.spawn(move |scope| { for child in &mut children { scope.spawn(move |scope| child.process_in(scope)); } }); process_value(&mut self.value); } }