Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DynamicでScalableな空間分割データ構造Bkd-Tree
Search
Takatomo Torigoe
November 27, 2020
Programming
0
940
DynamicでScalableな空間分割データ構造Bkd-Tree
社内勉強会資料です。
Takatomo Torigoe
November 27, 2020
Tweet
Share
More Decks by Takatomo Torigoe
See All by Takatomo Torigoe
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
830
AI動画生成ガチャ紹介
piyo7
1
130
AIイラスト生成・編集テクニック紹介
piyo7
2
380
PandasAIにおけるLLMを用いた自然言語クエリの仕組み
piyo7
0
470
HdrHistogram紹介:ストリーミングで統計値を算出するための 高速・省メモリなライブラリ
piyo7
0
350
AI画像生成の紹介スライドをAI画像とAIチャットで作ってみた
piyo7
0
330
将棋AI「dlshogi」紹介
piyo7
1
730
軌跡検索エンジンT-Torch論文紹介
piyo7
0
240
アドテクと機械学習
piyo7
0
340
Other Decks in Programming
See All in Programming
新メンバーも今日から大活躍!SREが支えるスケールし続ける組織のオンボーディング
honmarkhunt
5
7.4k
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
160
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
200
VS Code Update for GitHub Copilot
74th
2
650
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
220
High-Level Programming Languages in AI Era -Human Thought and Mind-
hayat01sh1da
PRO
0
780
NPOでのDevinの活用
codeforeveryone
0
840
XP, Testing and ninja testing
m_seki
3
250
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
130
10 Costly Database Performance Mistakes (And How To Fix Them)
andyatkinson
0
340
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
770
ふつうの技術スタックでアート作品を作ってみる
akira888
1
860
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
KATA
mclloyd
30
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Git: the NoSQL Database
bkeepers
PRO
430
65k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Documentation Writing (for coders)
carmenintech
72
4.9k
Bash Introduction
62gerente
613
210k
Practical Orchestrator
shlominoach
189
11k
Designing Experiences People Love
moore
142
24k
BBQ
matthewcrist
89
9.7k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
Dynamic で Scalable な 空間分割データ構造 Bkd-Tree 鳥越貴智 2020/11/27 データサイエンス共有会 #meetup_ds
Bkd-Tree? 全文検索エンジンElasticsearchで、地理インデックスとして使われている。 BKD-backed geo_shapes in Elasticsearch: precision + efficiency +
speed Geospatial Advancements in Elasticsearch Elasticsearchのコアである Apache Luceneで実装されている。 org.apache.lucene.util.bkd
Bkd-Tree? kd-Treeの亜種。ざっくり言うとforest of balanced binary kd-trees。 kd-Treeについては「k-d treeによる最近傍探索」が分かりやすい。 K-D-B-Treeよりもディスク使用率が高く追加コストを安くした、という触れ込み のためK-D-B-Treeから紹介します。
ちなみにK-D-B-TreeはWikipediaに英文記事があるものの、Bkd-Treeの解説記事 はほぼ無く「The Bkd Tree: A Dynamic Disk Optimized BSP Tree」くらい。
K-D-B-Tree The K-D-B-Tree : a search structure for large multidimensional
dynamic indexes (1981)
range query を想定 [K-D-B-Tree] Data Structure Region Pages Point Pages
平衡多分木 1 Nodeを 1 Pageに メモリ配置
[K-D-B-Tree] Insertions 1. 木を辿って、Pointの位置を含むPoint Pageを探し、Pointを追加する。 2. Pointが増えてPoint Pageが溢れたら、Regionを分割する。 3. Regionが増えてRegion
Pageが溢れたら、さらに親のRegionを分割する。 親Regionの分割は、 子Regionの分割を引き起こすため、 コストが高い。
[K-D-B-Tree] Splitting Patterns ] Pointの分布特性を知っているならば、 Cyclic以外の分割パターンの方がいい場合もある。
[K-D-B-Tree] Deletions and Reorganization 1. Pointが属するPoint Pageから、Pointを削除する。 2. ストレージ使用率が減ってきたらリバランス。 (リバランス例)
Region Page A, B, Cの使用率が半分を切ったため、 どれか二つを合体させたいが、 長方形にするためには三つ合体させないといけない。 しかし三つ合体すると溢れるため、 二つの長方形に再分割を行う必要がある。
[K-D-B-Tree] Utilization 空のK-D-B Treeに 一様乱数で発生させた100,000Points をCyclicに分割してInsertした実験
Bkd-Tree Bkd-Tree: A Dynamic Scalable kd-Tree (2003)
[Bkd-Tree] Main Idea • K-D-B-Treeは追加削除時にリバランスすることでクエリ性能を保つ代わり、 ストレージ使用率が低下する。(その後に提案されたhB-Treeも同じ) • Bkd-Treeはリバランスせず、後述の「Bulk Load」「Logarithmic Method」
という手法によって、ストレージをほぼ100%で使いきる。 // Bkd-Treeの論文はPageではなくBlockで使用率を考えている。K-D-B-Treeも 1 Node 1 Pageに拘らなければ、キャッシュヒット落とさず使用率上げる 実装はできる気がするものの、これは現代の感覚か(?) // 使用率は置いておいても、枝の数がまちまちだとクエリ性能落ちるので、 できるだけ木をコンパクトにするのは重要なはず。
[Bkd-Tree] Bulk Load • Bkd-Treeは2分木 ◦ 葉は一定数のPointを保持する。 ◦ 葉のインデックスのシフト演算で、子 ノードのポインタを置き換えられる。
• 空の木に1点ずつ追加するのではなく、ま とめて木を構築する。 (not Dynamic) • 1階層ごとにソートして分割位置を決める のではなく、グリッド行列で一気に掘る。
[Bkd-Tree] Logarithmic Method • サイズが指数的に膨らんでいく木の列をなす。ただし列は欠けてもよい。 • クエリは並列的に投げる。 • Point追加は、メモリ上のバッファ木 に対して行う。 ◦
これはリバランスせず、Leafを大きくしたり深くしたりするはず。 • バッファ木が溢れたら、ストレージ上の木とBulk Loadによってマージ。 ◦ 下図の場合 をマージして、 size 4Mの を作り出し、 を空にする。
[Bkd-Tree] Insertion Performance • Bkd-Treeは、追加コストがK-B-D-Treeより2桁安い。 ◦ 木のマージ自体はコスト高いが、その間もクエリは投げられる。