Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DynamicでScalableな空間分割データ構造Bkd-Tree
Search
Takatomo Torigoe
November 27, 2020
Programming
0
1k
DynamicでScalableな空間分割データ構造Bkd-Tree
社内勉強会資料です。
Takatomo Torigoe
November 27, 2020
Tweet
Share
More Decks by Takatomo Torigoe
See All by Takatomo Torigoe
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
990
AI動画生成ガチャ紹介
piyo7
1
310
AIイラスト生成・編集テクニック紹介
piyo7
2
440
PandasAIにおけるLLMを用いた自然言語クエリの仕組み
piyo7
0
520
HdrHistogram紹介:ストリーミングで統計値を算出するための 高速・省メモリなライブラリ
piyo7
0
410
AI画像生成の紹介スライドをAI画像とAIチャットで作ってみた
piyo7
0
350
将棋AI「dlshogi」紹介
piyo7
1
850
軌跡検索エンジンT-Torch論文紹介
piyo7
0
270
アドテクと機械学習
piyo7
0
370
Other Decks in Programming
See All in Programming
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
240
Rails Girls Sapporo 2ndの裏側―準備の日々から見えた、私が得たもの / SAPPORO ENGINEER BASE #11
lemonade_37
2
130
MCPサーバー「モディフィウス」で変更容易性の向上をスケールする / modifius
minodriven
8
1.4k
しっかり学ぶ java.lang.*
nagise
1
320
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
950
組織もソフトウェアも難しく考えない、もっとシンプルな考え方で設計する #phpconfuk
o0h
PRO
10
4.1k
自動テストのアーキテクチャとその理由ー大規模ゲーム開発の場合ー
segadevtech
2
980
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
1
470
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
530
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
4
580
モビリティSaaSにおけるデータ利活用の発展
nealle
0
150
例外処理を理解して、設計段階からエラーを見つけやすく、起こりにくく #phpconfuk
kajitack
12
5.9k
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
740
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Invisible Side of Design
smashingmag
302
51k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
33
1.8k
Faster Mobile Websites
deanohume
310
31k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Being A Developer After 40
akosma
91
590k
Agile that works and the tools we love
rasmusluckow
331
21k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
Dynamic で Scalable な 空間分割データ構造 Bkd-Tree 鳥越貴智 2020/11/27 データサイエンス共有会 #meetup_ds
Bkd-Tree? 全文検索エンジンElasticsearchで、地理インデックスとして使われている。 BKD-backed geo_shapes in Elasticsearch: precision + efficiency +
speed Geospatial Advancements in Elasticsearch Elasticsearchのコアである Apache Luceneで実装されている。 org.apache.lucene.util.bkd
Bkd-Tree? kd-Treeの亜種。ざっくり言うとforest of balanced binary kd-trees。 kd-Treeについては「k-d treeによる最近傍探索」が分かりやすい。 K-D-B-Treeよりもディスク使用率が高く追加コストを安くした、という触れ込み のためK-D-B-Treeから紹介します。
ちなみにK-D-B-TreeはWikipediaに英文記事があるものの、Bkd-Treeの解説記事 はほぼ無く「The Bkd Tree: A Dynamic Disk Optimized BSP Tree」くらい。
K-D-B-Tree The K-D-B-Tree : a search structure for large multidimensional
dynamic indexes (1981)
range query を想定 [K-D-B-Tree] Data Structure Region Pages Point Pages
平衡多分木 1 Nodeを 1 Pageに メモリ配置
[K-D-B-Tree] Insertions 1. 木を辿って、Pointの位置を含むPoint Pageを探し、Pointを追加する。 2. Pointが増えてPoint Pageが溢れたら、Regionを分割する。 3. Regionが増えてRegion
Pageが溢れたら、さらに親のRegionを分割する。 親Regionの分割は、 子Regionの分割を引き起こすため、 コストが高い。
[K-D-B-Tree] Splitting Patterns ] Pointの分布特性を知っているならば、 Cyclic以外の分割パターンの方がいい場合もある。
[K-D-B-Tree] Deletions and Reorganization 1. Pointが属するPoint Pageから、Pointを削除する。 2. ストレージ使用率が減ってきたらリバランス。 (リバランス例)
Region Page A, B, Cの使用率が半分を切ったため、 どれか二つを合体させたいが、 長方形にするためには三つ合体させないといけない。 しかし三つ合体すると溢れるため、 二つの長方形に再分割を行う必要がある。
[K-D-B-Tree] Utilization 空のK-D-B Treeに 一様乱数で発生させた100,000Points をCyclicに分割してInsertした実験
Bkd-Tree Bkd-Tree: A Dynamic Scalable kd-Tree (2003)
[Bkd-Tree] Main Idea • K-D-B-Treeは追加削除時にリバランスすることでクエリ性能を保つ代わり、 ストレージ使用率が低下する。(その後に提案されたhB-Treeも同じ) • Bkd-Treeはリバランスせず、後述の「Bulk Load」「Logarithmic Method」
という手法によって、ストレージをほぼ100%で使いきる。 // Bkd-Treeの論文はPageではなくBlockで使用率を考えている。K-D-B-Treeも 1 Node 1 Pageに拘らなければ、キャッシュヒット落とさず使用率上げる 実装はできる気がするものの、これは現代の感覚か(?) // 使用率は置いておいても、枝の数がまちまちだとクエリ性能落ちるので、 できるだけ木をコンパクトにするのは重要なはず。
[Bkd-Tree] Bulk Load • Bkd-Treeは2分木 ◦ 葉は一定数のPointを保持する。 ◦ 葉のインデックスのシフト演算で、子 ノードのポインタを置き換えられる。
• 空の木に1点ずつ追加するのではなく、ま とめて木を構築する。 (not Dynamic) • 1階層ごとにソートして分割位置を決める のではなく、グリッド行列で一気に掘る。
[Bkd-Tree] Logarithmic Method • サイズが指数的に膨らんでいく木の列をなす。ただし列は欠けてもよい。 • クエリは並列的に投げる。 • Point追加は、メモリ上のバッファ木 に対して行う。 ◦
これはリバランスせず、Leafを大きくしたり深くしたりするはず。 • バッファ木が溢れたら、ストレージ上の木とBulk Loadによってマージ。 ◦ 下図の場合 をマージして、 size 4Mの を作り出し、 を空にする。
[Bkd-Tree] Insertion Performance • Bkd-Treeは、追加コストがK-B-D-Treeより2桁安い。 ◦ 木のマージ自体はコスト高いが、その間もクエリは投げられる。