Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Qubism: self-similar visualization of a many-bo...
Search
Piotr Migdał
January 10, 2013
Science
1
350
Qubism: self-similar visualization of a many-body wavefunction
Article, code and more:
http://qubism.wikidot.com/
Piotr Migdał
January 10, 2013
Tweet
Share
More Decks by Piotr Migdał
See All by Piotr Migdał
Detecting trypophobia triggers (with deep learning)
pmigdal
1
260
Teaching Machine Learning
pmigdal
7
1.6k
A game needs to framework
pmigdal
1
190
Visualizing word coincidences
pmigdal
1
73
Dreams, Drugs and ConvNets
pmigdal
1
880
{Machine, Deep} Learning for software engineers
pmigdal
1
2.1k
Lightning talk - Teaching machine learning
pmigdal
0
1.7k
Interaktywna wizualizacja danych w d3.js
pmigdal
2
670
Gry naukowe, moja gra kwantowa
pmigdal
0
220
Other Decks in Science
See All in Science
生成検索エンジン最適化に関する研究の紹介
ynakano
2
900
機械学習 - pandas入門
trycycle
PRO
0
220
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
140
データベース01: データベースを使わない世界
trycycle
PRO
1
620
Ignite の1年間の軌跡
ktombow
0
120
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
780
統計学入門講座 第4回スライド
techmathproject
0
140
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
820
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
170
Introd_Img_Process_2_Frequ
hachama
0
550
証明支援系LEANに入門しよう
unaoya
0
1k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
0
520
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Visualization
eitanlees
146
16k
Gamification - CAS2011
davidbonilla
81
5.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
6
660
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
What's in a price? How to price your products and services
michaelherold
245
12k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
180
53k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
self-similar visualization of many-body wavefunctions QUBISM: presented by: Piotr Migdał
(ICFO, Barcelona)
Don’t take plots for granted!
None
None
bar chart - William Playfair (1786) scatter plot - Francis
Galton (a century later)
Dmitri Mendeleev | Periodic Table of Elements (1869) periodic table
- Dimitri Mendeleev (1869)
Back to the quantum world
↵|"i + |#i
↵|"i + |#i ⇠ = ↵| i + |•i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
None
None
00 01 10 11
00 01 10 11 00 01 00 01 10 11
10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
Examples
Dicke state |01i + |10i p 2
Dicke state |01i + |10i p 2 00 10 01
11
Dicke state (|0011i + |0101i +|0110i + |1001i +|1010i +
|1100i) / p 6
Dicke state particles zeros ones 6 3 3
Dicke state particles zeros ones 8 4 4
Dicke state particles zeros ones 10 5 5
Dicke state particles zeros ones 12 6 6
Dicke state particles zeros ones 14 7 7
Product state (↵|0i + |1i)n
Heisenberg AFM X ~ Si · ~ Si+1 (periodic boundary
cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si
· ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
It works for any qudit 1D spin chains
-- -0 -+ 0- 00 0+ +- +0 ++ +
qutrits (spin-1) 0 -
AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +
|00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +
1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
Alternative qubistic schemes
00 01 11 10 anti-ferromagnetic ferromagnetic
Heisenberg AFM X ~ Si · ~ Si+1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
None
Product state
Product state Dicke half-filled
Product state Dicke half-filled Ising transverse field (ground state)
Product state Dicke half-filled Ising transverse field (ground state) Heisenberg
(ground state)
You can see entanglement
entanglement: (1,2) vs (3,4,5,6,7,8,9,...)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled) A B B C 3 (entangled!)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank:
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
{|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt
number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
Renyi fractal dimension (and box counting)
AKLT ground state also works for qutrits (e.g. spin-1) log(4)
log(3) ⇡ 1 . 26 and its fractal dimension
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
And how about going the other way?
Jose I. Latorre, arXiv:quant-ph/0510031 (2005) QPEG! matrix product states for
image compression JPEG?
Javier Rodriguez-Laguna Piotr Migdał Miguel Ibanez Berganza Maciej Lewenstein German
Sierra
http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez
Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.
None