Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Qubism: self-similar visualization of a many-bo...
Search
Piotr Migdał
January 10, 2013
Science
1
410
Qubism: self-similar visualization of a many-body wavefunction
Article, code and more:
http://qubism.wikidot.com/
Piotr Migdał
January 10, 2013
Tweet
Share
More Decks by Piotr Migdał
See All by Piotr Migdał
Detecting trypophobia triggers (with deep learning)
pmigdal
1
300
Teaching Machine Learning
pmigdal
7
1.6k
A game needs to framework
pmigdal
1
210
Visualizing word coincidences
pmigdal
1
75
Dreams, Drugs and ConvNets
pmigdal
1
910
{Machine, Deep} Learning for software engineers
pmigdal
1
2.2k
Lightning talk - Teaching machine learning
pmigdal
0
1.7k
Interaktywna wizualizacja danych w d3.js
pmigdal
2
700
Gry naukowe, moja gra kwantowa
pmigdal
0
230
Other Decks in Science
See All in Science
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
110
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
180
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
290
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
190
知能とはなにかーヒトとAIのあいだー
tagtag
0
140
データベース01: データベースを使わない世界
trycycle
PRO
1
820
凸最適化からDC最適化まで
santana_hammer
1
310
データマイニング - グラフデータと経路
trycycle
PRO
1
220
Celebrate UTIG: Staff and Student Awards 2025
utig
0
260
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
400
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
210
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Site-Speed That Sticks
csswizardry
13
910
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Side Projects
sachag
455
43k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Transcript
self-similar visualization of many-body wavefunctions QUBISM: presented by: Piotr Migdał
(ICFO, Barcelona)
Don’t take plots for granted!
None
None
bar chart - William Playfair (1786) scatter plot - Francis
Galton (a century later)
Dmitri Mendeleev | Periodic Table of Elements (1869) periodic table
- Dimitri Mendeleev (1869)
Back to the quantum world
↵|"i + |#i
↵|"i + |#i ⇠ = ↵| i + |•i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
None
None
00 01 10 11
00 01 10 11 00 01 00 01 10 11
10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
Examples
Dicke state |01i + |10i p 2
Dicke state |01i + |10i p 2 00 10 01
11
Dicke state (|0011i + |0101i +|0110i + |1001i +|1010i +
|1100i) / p 6
Dicke state particles zeros ones 6 3 3
Dicke state particles zeros ones 8 4 4
Dicke state particles zeros ones 10 5 5
Dicke state particles zeros ones 12 6 6
Dicke state particles zeros ones 14 7 7
Product state (↵|0i + |1i)n
Heisenberg AFM X ~ Si · ~ Si+1 (periodic boundary
cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si
· ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
It works for any qudit 1D spin chains
-- -0 -+ 0- 00 0+ +- +0 ++ +
qutrits (spin-1) 0 -
AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +
|00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +
1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
Alternative qubistic schemes
00 01 11 10 anti-ferromagnetic ferromagnetic
Heisenberg AFM X ~ Si · ~ Si+1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
None
Product state
Product state Dicke half-filled
Product state Dicke half-filled Ising transverse field (ground state)
Product state Dicke half-filled Ising transverse field (ground state) Heisenberg
(ground state)
You can see entanglement
entanglement: (1,2) vs (3,4,5,6,7,8,9,...)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled) A B B C 3 (entangled!)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank:
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
{|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt
number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
Renyi fractal dimension (and box counting)
AKLT ground state also works for qutrits (e.g. spin-1) log(4)
log(3) ⇡ 1 . 26 and its fractal dimension
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
And how about going the other way?
Jose I. Latorre, arXiv:quant-ph/0510031 (2005) QPEG! matrix product states for
image compression JPEG?
Javier Rodriguez-Laguna Piotr Migdał Miguel Ibanez Berganza Maciej Lewenstein German
Sierra
http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez
Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.
None