$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Qubism: self-similar visualization of a many-bo...
Search
Piotr Migdał
January 10, 2013
Science
1
420
Qubism: self-similar visualization of a many-body wavefunction
Article, code and more:
http://qubism.wikidot.com/
Piotr Migdał
January 10, 2013
Tweet
Share
More Decks by Piotr Migdał
See All by Piotr Migdał
Detecting trypophobia triggers (with deep learning)
pmigdal
1
320
Teaching Machine Learning
pmigdal
7
1.6k
A game needs to framework
pmigdal
1
220
Visualizing word coincidences
pmigdal
1
77
Dreams, Drugs and ConvNets
pmigdal
1
920
{Machine, Deep} Learning for software engineers
pmigdal
1
2.2k
Lightning talk - Teaching machine learning
pmigdal
0
1.8k
Interaktywna wizualizacja danych w d3.js
pmigdal
2
710
Gry naukowe, moja gra kwantowa
pmigdal
0
230
Other Decks in Science
See All in Science
学術講演会中央大学学員会府中支部
tagtag
0
330
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
凸最適化からDC最適化まで
santana_hammer
1
330
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
210
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
420
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
890
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
130
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.7k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
It's Worth the Effort
3n
187
29k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Context Engineering - Making Every Token Count
addyosmani
9
480
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Transcript
self-similar visualization of many-body wavefunctions QUBISM: presented by: Piotr Migdał
(ICFO, Barcelona)
Don’t take plots for granted!
None
None
bar chart - William Playfair (1786) scatter plot - Francis
Galton (a century later)
Dmitri Mendeleev | Periodic Table of Elements (1869) periodic table
- Dimitri Mendeleev (1869)
Back to the quantum world
↵|"i + |#i
↵|"i + |#i ⇠ = ↵| i + |•i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
None
None
00 01 10 11
00 01 10 11 00 01 00 01 10 11
10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
Examples
Dicke state |01i + |10i p 2
Dicke state |01i + |10i p 2 00 10 01
11
Dicke state (|0011i + |0101i +|0110i + |1001i +|1010i +
|1100i) / p 6
Dicke state particles zeros ones 6 3 3
Dicke state particles zeros ones 8 4 4
Dicke state particles zeros ones 10 5 5
Dicke state particles zeros ones 12 6 6
Dicke state particles zeros ones 14 7 7
Product state (↵|0i + |1i)n
Heisenberg AFM X ~ Si · ~ Si+1 (periodic boundary
cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si
· ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
It works for any qudit 1D spin chains
-- -0 -+ 0- 00 0+ +- +0 ++ +
qutrits (spin-1) 0 -
AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +
|00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +
1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
Alternative qubistic schemes
00 01 11 10 anti-ferromagnetic ferromagnetic
Heisenberg AFM X ~ Si · ~ Si+1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
None
Product state
Product state Dicke half-filled
Product state Dicke half-filled Ising transverse field (ground state)
Product state Dicke half-filled Ising transverse field (ground state) Heisenberg
(ground state)
You can see entanglement
entanglement: (1,2) vs (3,4,5,6,7,8,9,...)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled) A B B C 3 (entangled!)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank:
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
{|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt
number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
Renyi fractal dimension (and box counting)
AKLT ground state also works for qutrits (e.g. spin-1) log(4)
log(3) ⇡ 1 . 26 and its fractal dimension
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
And how about going the other way?
Jose I. Latorre, arXiv:quant-ph/0510031 (2005) QPEG! matrix product states for
image compression JPEG?
Javier Rodriguez-Laguna Piotr Migdał Miguel Ibanez Berganza Maciej Lewenstein German
Sierra
http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez
Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.
None