Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Qubism: self-similar visualization of a many-bo...

Piotr Migdał
January 10, 2013

Qubism: self-similar visualization of a many-body wavefunction

Article, code and more: http://qubism.wikidot.com/

Piotr Migdał

January 10, 2013
Tweet

More Decks by Piotr Migdał

Other Decks in Science

Transcript

  1. ↵|"i + |#i ⇠ = ↵| i + |•i ⇠

    = ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
  2. ↵|"i + |#i ⇠ = ↵| i + |•i ⇠

    = ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
  3. ↵|"i + |#i ⇠ = ↵| i + |•i ⇠

    = ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
  4. 00 01 10 11 00 01 00 01 10 11

    10 11 00 01 00 01 10 11 10 11
  5. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
  6. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
  7. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
  8. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
  9. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
  10. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
  11. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
  12. 00 01 10 11 00 01 10 11 00 01

    10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
  13. Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si

    · ~ Si+1 (periodic boundary cond.)
  14. Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)

    (6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
  15. Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)

    (6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
  16. -- -0 -+ 0- 00 0+ +- +0 ++ +

    qutrits (spin-1) 0 -
  17. AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +

    |00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
  18. AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +

    1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
  19. AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3

    ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
  20. AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3

    ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
  21. AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3

    ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
  22. entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A

    1 (not entangled) A B B C 3 (entangled!)
  23. entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A

    A A A A A A A A A A A A 1 (not entangled)
  24. entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A

    A A A A A A A A A A A A 1 (not entangled) A
  25. A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt

    rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
  26. A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt

    rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
  27. A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt

    rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
  28. A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt

    rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
  29. {|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt

    number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
  30. AKLT ground state also works for qutrits (e.g. spin-1) log(4)

    log(3) ⇡ 1 . 26 and its fractal dimension
  31. 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8

    1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
  32. 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8

    1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
  33. http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez

    Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.