Upgrade to PRO for Only $50/Yearβ€”Limited-Time Offer! πŸ”₯

complex_ch10

Avatar for prettyface prettyface
June 16, 2012
270

Β complex_ch10

Avatar for prettyface

prettyface

June 16, 2012
Tweet

Transcript

  1. Chapter 10 Exercise 1. (c.f. Chapter 9, Ex9. Ex11. Ex15)

    (a) I. 0 is a double pole; Res 1 z4 + z2 ; 0 = lim zβ†’0 1 1! d dz z2 1 z4 + z2 = lim zβ†’0 d dz 1 z2 + 1 = lim zβ†’0 βˆ’2z (z2 + 1)2 = 0. II. i is a simple pole; Res 1 z4 + z2 ; i = lim zβ†’i (z βˆ’ i) 1 z4 + z2 = lim zβ†’i 1 z2(z + i) = βˆ’ 1 2i . III. βˆ’i is a simple pole; Res 1 z4 + z2 ; βˆ’i = lim zβ†’βˆ’i (z + i) 1 z4 + z2 = lim zβ†’βˆ’i 1 z2(z βˆ’ i) = 1 2i . (b) kΟ€ is a simple pole for k ∈ Z; since cot z = cos z sin z and d dz sin z = cos z, then Res cot z; kΟ€ = cos z cos z z=kΟ€ = 1, for k ∈ Z. (c) kΟ€ is a simple pole for k ∈ Z; since csc z = 1 sin z and d dz sin z = cos z, then Res csc z; kΟ€ = 1 cos z z=kΟ€ = (βˆ’1)k, for k ∈ Z. (d) I. 1 is a simple pole; Res e1/z2 z βˆ’ 1 ; 1 = lim zβ†’1 (z βˆ’ 1) e1/z2 z βˆ’ 1 = lim zβ†’1 e1/z2 = e. II. 0 is an essential singularity; Res e1/z2 z βˆ’ 1 ; 0 = Cβˆ’1 = βˆ’e + 1. (from Ex11.b of Chapter 9) (e) 1 z2 + 3z + 2 = 1 (z + 1)(z + 2) I. Since lim zβ†’βˆ’1 (z + 1) 1 z2 + 3z + 2 = lim zβ†’βˆ’1 1 z + 2 = 1 = 0 and lim zβ†’βˆ’1 (z + 1)2 1 z2 + 3z + 2 = 0, 1
  2. then by Theorem 9.5, βˆ’1 is a simple pole, and

    Res 1 z2 + 3z + 2 ; βˆ’1 = lim zβ†’βˆ’1 (z + 1) 1 z2 + 3z + 2 = 1. II. Since lim zβ†’βˆ’2 (z + 2) 1 z2 + 3z + 2 = lim zβ†’βˆ’2 1 z + 1 = βˆ’1 = 0 and lim zβ†’βˆ’2 (z + 2)2 1 z2 + 3z + 2 = 0, then by Theorem 9.5, βˆ’2 is a simple pole, and Res 1 z2 + 3z + 2 ; βˆ’2 = lim zβ†’βˆ’2 (z + 2) 1 z2 + 3z + 2 = βˆ’1. (f) Let the Laurent expansion of sin 1 z is ∞ k=βˆ’βˆž ck zk. Since sin 1 z = ∞ n=βˆ’βˆž (zβˆ’1)2n+1 (2n + 1)! , then sin 1 z has a essential singularity at z = 0, and Res sin 1 z ; 0 = Cβˆ’1 = 1. (g) Let the Laurent expansion of ze3/z is ∞ k=βˆ’βˆž ck zk. Since ze3/z = z ∞ n=0 1 n! ( 3 n )n = ∞ n=0 3n n! z1βˆ’n = 1 k=βˆ’βˆž 31βˆ’k (1 βˆ’ k)! zk, then ze3/z has a essential singularity at z = 0, and Res ze3/z; 0 = Cβˆ’1 = 31βˆ’(βˆ’1) [1 βˆ’ (βˆ’1)]! = 9 2 . (h) η•₯ Exercise 2. (c.f. Ex1.) (a) From Ex1(b), kΟ€ is a simple pole and Res(cot z; kΟ€) = 1 for k ∈ Z. Since n(|z| = 1, kΟ€) = ο£± ο£² ο£³ 1, if k = 0 0, otherwise , then |z|=1 cot zdz = 2Ο€i ∞ k=βˆ’βˆž n(|z| = 1, kΟ€) Res(cot z; kΟ€) = 2Ο€i. 2
  3. (b) (Another version) Let f(z) = (z3 βˆ’ 1)(z βˆ’

    4) = (z βˆ’ 1) z βˆ’ βˆ’1 + √ 3i 2 z βˆ’ βˆ’1 βˆ’ √ 3i 2 (z βˆ’ 4), and let z1 = 1, z2 = βˆ’1 + √ 3i 2 , z3 = βˆ’1 βˆ’ √ 3i 2 , z4 = 4. For z1 : Since lim zβ†’z1 (z βˆ’ z1 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z1 1 (z βˆ’ 4)(z βˆ’ z2 )(z βˆ’ z3 ) = 1 (1 βˆ’ 4)(1 βˆ’ βˆ’1+ √ 3i 2 )(1 βˆ’ βˆ’1βˆ’ √ 3i 2 ) = βˆ’ 1 9 and lim zβ†’z1 (z βˆ’ z1 )2 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z1 z βˆ’ z1 (z βˆ’ 4)(z βˆ’ z2 )(z βˆ’ z3 ) = 0, then z1 is a simple pole. For z2 : Since lim zβ†’z2 (z βˆ’ z2 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z2 1 (z βˆ’ 4)(z βˆ’ z1 )(z βˆ’ z3 ) = 1 (βˆ’1+ √ 3i 2 βˆ’ 4)(βˆ’1+ √ 3i 2 βˆ’ 1)(βˆ’1+ √ 3i 2 βˆ’ βˆ’1βˆ’ √ 3i 2 ) = 1 9 βˆ’ 6 √ 3i and lim zβ†’z2 (z βˆ’ z2 )2 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z2 z βˆ’ z2 (z βˆ’ 4)(z βˆ’ z1 )(z βˆ’ z3 ) = 0, then z2 is a simple pole. For z3 : Since lim zβ†’z3 (z βˆ’ z3 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z3 1 (z βˆ’ 4)(z βˆ’ z1 )(z βˆ’ z2 ) = 1 (βˆ’1βˆ’ √ 3i 2 βˆ’ 4)(βˆ’1βˆ’ √ 3i 2 βˆ’ 1)(βˆ’1βˆ’ √ 3i 2 βˆ’ βˆ’1+ √ 3i 2 ) = 1 9 + 6 √ 3i and lim zβ†’z3 (z βˆ’ z3 )2 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z3 z βˆ’ z3 (z βˆ’ 4)(z βˆ’ z1 )(z βˆ’ z2 ) = 0, 3
  4. then z3 is a simple pole. For z4 : Since

    lim zβ†’z4 (z βˆ’ z4 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z4 1 z3 βˆ’ 1 = 1 43 βˆ’ 1 = 1 63 and lim zβ†’z4 (z βˆ’ z4 )2 1 (z βˆ’ 4)(z3 βˆ’ 1) = lim zβ†’z4 z βˆ’ z4 z3 βˆ’ 1 = 0, then z4 is a simple pole. Next, we calculate the winding numbers and residues of f(z) for zk , k = 1, 2, 3, 4. Winding numbers: n(|z| = 2, zk ) = ο£± ο£² ο£³ 1, if k = 1, 2, 3 0, if k = 4 . Residues: Res(f; z1 ) = lim zβ†’z1 (z βˆ’ z1 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = βˆ’ 1 9 ; Res(f; z2 ) = lim zβ†’z2 (z βˆ’ z2 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = 1 9 βˆ’ 6 √ 3i ; Res(f; z3 ) = lim zβ†’z3 (z βˆ’ z3 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = 1 9 + 6 √ 3i ; Res(f; z4 ) = lim zβ†’z4 (z βˆ’ z4 ) 1 (z βˆ’ 4)(z3 βˆ’ 1) = 1 63 . Hence, |z|=2 dz (z βˆ’ 4)(z3 βˆ’ 1) = 2Ο€i 4 k=1 n(|z| = 2, zk ) Res(f; zk ) = 2Ο€i βˆ’ 1 9 + 1 9 βˆ’ 6 √ 3i + 1 9 + 6 √ 3i = βˆ’ 2Ο€i 63 . Specially, |z|=r dz (zβˆ’4)(z3βˆ’1) = 0, for r > 4. (c) From Ex1(f), 0 is an essential singularity and Res(sin 1 z ; 0) = 1. Since n(|z| = 1, 0) = 1, then |z|=1 sin 1 z dz = 2Ο€i Γ— n(|z| = 1, 0) Γ— Res(sin 1 z ; 0) = 2Ο€i. 4
  5. (d) From Ex1(g), 0 is an essential singularity and Res(ze3/z;

    0) = 9 2 . Since n(|z| = 2, 0) = 1, then |z|=2 ze3 z dz = 2Ο€i Γ— n(|z| = 2, 0) Γ— Res(ze3 z ; 0) = 9Ο€i. Exercise 3. When z = 2Ο€ki, k ∈ Z, the function (1βˆ’eβˆ’z)n is zero, then 1 (1βˆ’eβˆ’z)n has a pole at z = 2Ο€ki, k ∈ Z. Let C be any regular closed curve surrounding z = 0 and not surrounding any of the other singularities: z = 2Ο€ki, k = Β±1, Β±2, Β· Β· Β· . Then it leads to n(C, 2Ο€ki) = ο£± ο£² ο£³ 1, if k = 0 0, otherwise , and C dz (1 βˆ’ eβˆ’z)n = 2Ο€i k∈Z n(C, 2Ο€ki)Res 1 (1 βˆ’ eβˆ’z)n ; 2Ο€ki = 2Ο€iRes 1 (1 βˆ’ eβˆ’z)n ; 0 . Next, letting Ο‰ = 1βˆ’eβˆ’z, we have eβˆ’z = 1βˆ’Ο‰ β‡’ βˆ’eβˆ’zdz = βˆ’dΟ‰ β‡’ dz = dΟ‰ eβˆ’z = dΟ‰ 1βˆ’Ο‰ , it implies C dz (1 βˆ’ eβˆ’z)n = Cβˆ— dΟ‰ Ο‰n(1 βˆ’ Ο‰) , where Cβˆ— is the image under Ο‰ = 1 βˆ’ eβˆ’z of C. Note that: 1. 1 Ο‰n(1βˆ’Ο‰) has a pole at Ο‰ = 0, 1. 2. Cβˆ— surrounds 0 and not 1 in the Ο‰-plane. For this, we consider the following: 5
  6. Then it implies n(Cβˆ—, 0) = 1, n(Cβˆ—, 1) =

    0 and Cβˆ— dΟ‰ Ο‰n(1 βˆ’ Ο‰) = 2Ο€iRes 1 Ο‰n(1 βˆ’ Ο‰) ; 0 . Since 1 Ο‰n(1βˆ’Ο‰) = Ο‰βˆ’n(1 + Ο‰ + Ο‰2 + Β· Β· Β· ) = ∞ k=βˆ’n Ο‰k, and hence Res 1 (1 βˆ’ eβˆ’z)n ; 0 = Res 1 Ο‰n(1 βˆ’ Ο‰) ; 0 = 1. 6