Upgrade to PRO for Only $50/Yearโ€”Limited-Time Offer! ๐Ÿ”ฅ

complex_ch10

Avatar for prettyface prettyface
June 16, 2012
270

ย complex_ch10

Avatar for prettyface

prettyface

June 16, 2012
Tweet

Transcript

  1. Chapter 10 Exercise 1. (c.f. Chapter 9, Ex9. Ex11. Ex15)

    (a) I. 0 is a double pole; Res 1 z4 + z2 ; 0 = lim zโ†’0 1 1! d dz z2 1 z4 + z2 = lim zโ†’0 d dz 1 z2 + 1 = lim zโ†’0 โˆ’2z (z2 + 1)2 = 0. II. i is a simple pole; Res 1 z4 + z2 ; i = lim zโ†’i (z โˆ’ i) 1 z4 + z2 = lim zโ†’i 1 z2(z + i) = โˆ’ 1 2i . III. โˆ’i is a simple pole; Res 1 z4 + z2 ; โˆ’i = lim zโ†’โˆ’i (z + i) 1 z4 + z2 = lim zโ†’โˆ’i 1 z2(z โˆ’ i) = 1 2i . (b) kฯ€ is a simple pole for k โˆˆ Z; since cot z = cos z sin z and d dz sin z = cos z, then Res cot z; kฯ€ = cos z cos z z=kฯ€ = 1, for k โˆˆ Z. (c) kฯ€ is a simple pole for k โˆˆ Z; since csc z = 1 sin z and d dz sin z = cos z, then Res csc z; kฯ€ = 1 cos z z=kฯ€ = (โˆ’1)k, for k โˆˆ Z. (d) I. 1 is a simple pole; Res e1/z2 z โˆ’ 1 ; 1 = lim zโ†’1 (z โˆ’ 1) e1/z2 z โˆ’ 1 = lim zโ†’1 e1/z2 = e. II. 0 is an essential singularity; Res e1/z2 z โˆ’ 1 ; 0 = Cโˆ’1 = โˆ’e + 1. (from Ex11.b of Chapter 9) (e) 1 z2 + 3z + 2 = 1 (z + 1)(z + 2) I. Since lim zโ†’โˆ’1 (z + 1) 1 z2 + 3z + 2 = lim zโ†’โˆ’1 1 z + 2 = 1 = 0 and lim zโ†’โˆ’1 (z + 1)2 1 z2 + 3z + 2 = 0, 1
  2. then by Theorem 9.5, โˆ’1 is a simple pole, and

    Res 1 z2 + 3z + 2 ; โˆ’1 = lim zโ†’โˆ’1 (z + 1) 1 z2 + 3z + 2 = 1. II. Since lim zโ†’โˆ’2 (z + 2) 1 z2 + 3z + 2 = lim zโ†’โˆ’2 1 z + 1 = โˆ’1 = 0 and lim zโ†’โˆ’2 (z + 2)2 1 z2 + 3z + 2 = 0, then by Theorem 9.5, โˆ’2 is a simple pole, and Res 1 z2 + 3z + 2 ; โˆ’2 = lim zโ†’โˆ’2 (z + 2) 1 z2 + 3z + 2 = โˆ’1. (f) Let the Laurent expansion of sin 1 z is โˆž k=โˆ’โˆž ck zk. Since sin 1 z = โˆž n=โˆ’โˆž (zโˆ’1)2n+1 (2n + 1)! , then sin 1 z has a essential singularity at z = 0, and Res sin 1 z ; 0 = Cโˆ’1 = 1. (g) Let the Laurent expansion of ze3/z is โˆž k=โˆ’โˆž ck zk. Since ze3/z = z โˆž n=0 1 n! ( 3 n )n = โˆž n=0 3n n! z1โˆ’n = 1 k=โˆ’โˆž 31โˆ’k (1 โˆ’ k)! zk, then ze3/z has a essential singularity at z = 0, and Res ze3/z; 0 = Cโˆ’1 = 31โˆ’(โˆ’1) [1 โˆ’ (โˆ’1)]! = 9 2 . (h) ็•ฅ Exercise 2. (c.f. Ex1.) (a) From Ex1(b), kฯ€ is a simple pole and Res(cot z; kฯ€) = 1 for k โˆˆ Z. Since n(|z| = 1, kฯ€) = ๏ฃฑ ๏ฃฒ ๏ฃณ 1, if k = 0 0, otherwise , then |z|=1 cot zdz = 2ฯ€i โˆž k=โˆ’โˆž n(|z| = 1, kฯ€) Res(cot z; kฯ€) = 2ฯ€i. 2
  3. (b) (Another version) Let f(z) = (z3 โˆ’ 1)(z โˆ’

    4) = (z โˆ’ 1) z โˆ’ โˆ’1 + โˆš 3i 2 z โˆ’ โˆ’1 โˆ’ โˆš 3i 2 (z โˆ’ 4), and let z1 = 1, z2 = โˆ’1 + โˆš 3i 2 , z3 = โˆ’1 โˆ’ โˆš 3i 2 , z4 = 4. For z1 : Since lim zโ†’z1 (z โˆ’ z1 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z1 1 (z โˆ’ 4)(z โˆ’ z2 )(z โˆ’ z3 ) = 1 (1 โˆ’ 4)(1 โˆ’ โˆ’1+ โˆš 3i 2 )(1 โˆ’ โˆ’1โˆ’ โˆš 3i 2 ) = โˆ’ 1 9 and lim zโ†’z1 (z โˆ’ z1 )2 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z1 z โˆ’ z1 (z โˆ’ 4)(z โˆ’ z2 )(z โˆ’ z3 ) = 0, then z1 is a simple pole. For z2 : Since lim zโ†’z2 (z โˆ’ z2 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z2 1 (z โˆ’ 4)(z โˆ’ z1 )(z โˆ’ z3 ) = 1 (โˆ’1+ โˆš 3i 2 โˆ’ 4)(โˆ’1+ โˆš 3i 2 โˆ’ 1)(โˆ’1+ โˆš 3i 2 โˆ’ โˆ’1โˆ’ โˆš 3i 2 ) = 1 9 โˆ’ 6 โˆš 3i and lim zโ†’z2 (z โˆ’ z2 )2 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z2 z โˆ’ z2 (z โˆ’ 4)(z โˆ’ z1 )(z โˆ’ z3 ) = 0, then z2 is a simple pole. For z3 : Since lim zโ†’z3 (z โˆ’ z3 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z3 1 (z โˆ’ 4)(z โˆ’ z1 )(z โˆ’ z2 ) = 1 (โˆ’1โˆ’ โˆš 3i 2 โˆ’ 4)(โˆ’1โˆ’ โˆš 3i 2 โˆ’ 1)(โˆ’1โˆ’ โˆš 3i 2 โˆ’ โˆ’1+ โˆš 3i 2 ) = 1 9 + 6 โˆš 3i and lim zโ†’z3 (z โˆ’ z3 )2 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z3 z โˆ’ z3 (z โˆ’ 4)(z โˆ’ z1 )(z โˆ’ z2 ) = 0, 3
  4. then z3 is a simple pole. For z4 : Since

    lim zโ†’z4 (z โˆ’ z4 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z4 1 z3 โˆ’ 1 = 1 43 โˆ’ 1 = 1 63 and lim zโ†’z4 (z โˆ’ z4 )2 1 (z โˆ’ 4)(z3 โˆ’ 1) = lim zโ†’z4 z โˆ’ z4 z3 โˆ’ 1 = 0, then z4 is a simple pole. Next, we calculate the winding numbers and residues of f(z) for zk , k = 1, 2, 3, 4. Winding numbers: n(|z| = 2, zk ) = ๏ฃฑ ๏ฃฒ ๏ฃณ 1, if k = 1, 2, 3 0, if k = 4 . Residues: Res(f; z1 ) = lim zโ†’z1 (z โˆ’ z1 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = โˆ’ 1 9 ; Res(f; z2 ) = lim zโ†’z2 (z โˆ’ z2 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = 1 9 โˆ’ 6 โˆš 3i ; Res(f; z3 ) = lim zโ†’z3 (z โˆ’ z3 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = 1 9 + 6 โˆš 3i ; Res(f; z4 ) = lim zโ†’z4 (z โˆ’ z4 ) 1 (z โˆ’ 4)(z3 โˆ’ 1) = 1 63 . Hence, |z|=2 dz (z โˆ’ 4)(z3 โˆ’ 1) = 2ฯ€i 4 k=1 n(|z| = 2, zk ) Res(f; zk ) = 2ฯ€i โˆ’ 1 9 + 1 9 โˆ’ 6 โˆš 3i + 1 9 + 6 โˆš 3i = โˆ’ 2ฯ€i 63 . Specially, |z|=r dz (zโˆ’4)(z3โˆ’1) = 0, for r > 4. (c) From Ex1(f), 0 is an essential singularity and Res(sin 1 z ; 0) = 1. Since n(|z| = 1, 0) = 1, then |z|=1 sin 1 z dz = 2ฯ€i ร— n(|z| = 1, 0) ร— Res(sin 1 z ; 0) = 2ฯ€i. 4
  5. (d) From Ex1(g), 0 is an essential singularity and Res(ze3/z;

    0) = 9 2 . Since n(|z| = 2, 0) = 1, then |z|=2 ze3 z dz = 2ฯ€i ร— n(|z| = 2, 0) ร— Res(ze3 z ; 0) = 9ฯ€i. Exercise 3. When z = 2ฯ€ki, k โˆˆ Z, the function (1โˆ’eโˆ’z)n is zero, then 1 (1โˆ’eโˆ’z)n has a pole at z = 2ฯ€ki, k โˆˆ Z. Let C be any regular closed curve surrounding z = 0 and not surrounding any of the other singularities: z = 2ฯ€ki, k = ยฑ1, ยฑ2, ยท ยท ยท . Then it leads to n(C, 2ฯ€ki) = ๏ฃฑ ๏ฃฒ ๏ฃณ 1, if k = 0 0, otherwise , and C dz (1 โˆ’ eโˆ’z)n = 2ฯ€i kโˆˆZ n(C, 2ฯ€ki)Res 1 (1 โˆ’ eโˆ’z)n ; 2ฯ€ki = 2ฯ€iRes 1 (1 โˆ’ eโˆ’z)n ; 0 . Next, letting ฯ‰ = 1โˆ’eโˆ’z, we have eโˆ’z = 1โˆ’ฯ‰ โ‡’ โˆ’eโˆ’zdz = โˆ’dฯ‰ โ‡’ dz = dฯ‰ eโˆ’z = dฯ‰ 1โˆ’ฯ‰ , it implies C dz (1 โˆ’ eโˆ’z)n = Cโˆ— dฯ‰ ฯ‰n(1 โˆ’ ฯ‰) , where Cโˆ— is the image under ฯ‰ = 1 โˆ’ eโˆ’z of C. Note that: 1. 1 ฯ‰n(1โˆ’ฯ‰) has a pole at ฯ‰ = 0, 1. 2. Cโˆ— surrounds 0 and not 1 in the ฯ‰-plane. For this, we consider the following: 5
  6. Then it implies n(Cโˆ—, 0) = 1, n(Cโˆ—, 1) =

    0 and Cโˆ— dฯ‰ ฯ‰n(1 โˆ’ ฯ‰) = 2ฯ€iRes 1 ฯ‰n(1 โˆ’ ฯ‰) ; 0 . Since 1 ฯ‰n(1โˆ’ฯ‰) = ฯ‰โˆ’n(1 + ฯ‰ + ฯ‰2 + ยท ยท ยท ) = โˆž k=โˆ’n ฯ‰k, and hence Res 1 (1 โˆ’ eโˆ’z)n ; 0 = Res 1 ฯ‰n(1 โˆ’ ฯ‰) ; 0 = 1. 6