Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Navigating Weather and Climate Data

Navigating Weather and Climate Data

Talk given at NYC Climate Week 2024

Avatar for Ryan Abernathey

Ryan Abernathey

June 12, 2025
Tweet

More Decks by Ryan Abernathey

Other Decks in Science

Transcript

  1. CONFIDENTIAL — PLEASE DO NOT DISTRIBUTE EARTHMOVER.IO NYC Clim a

    te Week 2024 N a vig a ting We a ther a nd Clim a te D a t a
  2. © 2025 EARTHMOVER PBC EARTHMOVER.IO outline  Wh a t

    a re we a ther a nd clim a te d a t a used for?  Where do we a ther a nd clim a te d a t a come from? • Types of d a t a : observ a tions, models, d a t a a ssimil a tion • Popul a r d a t a providers a nd d a t a products • CMIP6 spotlight  Technology for we a ther a nd clim a te d a t a systems • P a st / present / future
  3. EARTHMOVER.IO CEO, Co-Founder Community cheerle a der Open source developer

    X a rr a y, Z a rr, Xgcm, Rechunker, P a ngeo Forge, etc. Ex Professor Physic a l Oce a nogr a pher & Clim a te Scientist NASA SWOT Science Te a m LEAP & M2LiNES who a m I?
  4. Confidential — Please do not distribute 4 E a rthmover:

    a public benefit corpor a tion MISSION STATEMENT To empower people to use scientific d a t a to solve hum a nity’s gre a test ch a llenges Ry a n Abern a they CO - FOUNDER & CEO Joe H a mm a n CO - FOUNDER & CTO OUR TEAM  Experienced scientists.  Open source community leaders.  Seasoned engineers who have built production-grade scientific data infrastructure at top companies. OUR PRIOR EXPERIENCE OUR OPEN - SOURCE LEADERSHIP
  5. EARTHMOVER.IO Wh a t a re we a ther a

    nd clim a te d a t a used for?
  6. © 2025 EARTHMOVER PBC EARTHMOVER.IO sp a ce a nd

    time sc a les of E a rth System phenomen a torn a does severe storms hurric a nes extr a tropic a l cyclones se a sons ENSO clim a te ch a nge Ad a pted from T a v a kolif a r et a l. 2017 https://doi.org/10.2166/wcc.2017.107 M IN U TES H O U R S D AYS W EEKS M O N TH S YEA R S D EC A D ES C EN TU R IES 1 KM 10 KM 100 KM 1000 KM 10,000 KM S EC O N D S GLOBAL SMALL BIG FAST SLOW m a rine he a tw a ves wild fi re drought flood
  7. © 2025 EARTHMOVER PBC EARTHMOVER.IO sp a ce a nd

    time sc a les torn a does severe storms hurric a nes extr a tropic a l cyclones se a sons ENSO clim a te ch a nge Ad a pted from T a v a kolif a r et a l. 2017 https://doi.org/10.2166/wcc.2017.107 M IN U TES H O U R S D AYS W EEKS M O N TH S YEA R S D EC A D ES C EN TU R IES 1 KM 10 KM 100 KM 1000 KM 10,000 KM S EC O N D S GLOBAL SMALL BIG FAST SLOW m a rine he a tw a ves wild fi re drought flood high-frequency tr a ders long-term a sset m a n a gers d a y tr a ders stocks, bonds, commodities, investment b a nks, priv a te equity, VC fin a nci a l sector
  8. © 2025 EARTHMOVER PBC EARTHMOVER.IO whose bottom line is imp

    a cted by we a ther a nd clim a te phenomen a ?  Agriculture  Forestry  Energy • Fossil Fuels (dem a nd) • Renew a bles (supply + dem a nd)  Tr a nsport a tion  He a lth  Ret a il  Hospit a lity  Construction  Re a l Est a te  Fin a nci a ls  Insur a nce  C a rbon m a rkets
  9. EARTHMOVER.IO © 2025 EARTHMOVER PBC the d a t a

    v a lue ch a in  Body level one • Body level two 🛰 d a t a providers Gener a te r a w d a t a sets using direct observ a tions or simul a tion c a p a bilities. ex a mples: 🏭 d a t a refiners Process r a w d a t a to produce v a lue- a dded d a t a sets using modeling, st a tistics, AI / ML. ex a mples: ⛏ d a t a end users Comp a nies / institutions with a ctu a l a ssets a t risk to environment a l f a ctors. ex a mples:
  10. p a st present future wh a t h a

    ppened? wh a t’s h a ppening now? wh a t will h a ppen?
  11. © 2025 EARTHMOVER PBC EARTHMOVER.IO observ a tions WEATHER STATION

    AIRPORT WEATHER STATION RADIOSONDE (WEATHER BALLOON)
  12. © 2025 EARTHMOVER PBC EARTHMOVER.IO remote sensing → NASA s

    a tellite fleet! Credit: NASA Scienti fi c Visualization Studio
  13. © 2025 EARTHMOVER PBC EARTHMOVER.IO different types of s a

    tellite d a t a → “simple” s a tellite im a gery → a dv a nced remote sensing of physic a l v a ri a bles SWOT S a tellite Im a ge Credit: NASA, CNES Arctic Wildfires LANDSAT S a tellite Im a ge Credit: NASA E a rth Observ a tory
  14. EARTHMOVER.IO 😱 But I just w a nt to know

    the wind speed in Chic a go on M a y 12, 1985?
  15. EARTHMOVER.IO 😱 But I just w a nt to know

    the wind speed in Chic a go on M a y 12, 1985? Models to the rescue!
  16. © 2025 EARTHMOVER PBC EARTHMOVER.IO E a rth-system models Kot

    a m a rthi, R a o, et a l. “Glob a l Clim a te Models.” Downsc a ling Techniques for High-Resolution Clim a te Projections: From Glob a l Ch a nge to Loc a l Imp a cts. C a mbridge: C a mbridge University Press, 2021. 19 – 39. Print.  Equ a tions of physics  Numeric a l discretiz a tion of the E a rth (i.e. a “grid”)  Millions of lines of FORTRAN code
  17. © 2025 EARTHMOVER PBC EARTHMOVER.IO E a rth-system models →

    resolution a nd comput a tion a l cost IPCC AR4 WG1 Figure 1.4 1990 1996 2001 2007 Frontier Ex a sc a le Supercomputer. Credit OLCF Incre a sing Comput a tion a l Cost Incre a sing D a t a Volume
  18. © 2025 EARTHMOVER PBC EARTHMOVER.IO models + d a t

    a = d a t a a ssimil a tion → simple ex a mple POSITION AT T1 POSITION AT T2 d2x dt2 = − g ̂ k f = ma LAWS OF PHYSICS prediction? observ a tions Z
  19. EARTHMOVER.IO E a rth system d a t a a

    ssimil a tion All a v a il a ble observ a tions Physics Simul a tion forec a st a n a lysis re a n a lysis
  20. © 2025 EARTHMOVER PBC EARTHMOVER.IO oper a tion a l

    a n a lysis a nd forec a sts Credit: ECMWF
  21. © 2025 EARTHMOVER PBC EARTHMOVER.IO we a ther forec a

    sts a re getting better! Credit: ECMWF
  22. © 2025 EARTHMOVER PBC EARTHMOVER.IO popul a r forec a

    st d a t a products  Europe a n Center for Medium R a nge We a ther Forec a sting (ECMWF) • HRES - High-resolution 10-d a y forec a st • ENS - Ensemble 15-d a y forec a st • SEAS - Se a son a l Forec a st  US N a tion a l Oce a nogr a phic a nd Atmospheric Administr a tion (NOAA) • GFS - Glob a l Forec a st System • GEFS - Glob a l Ensemble Forec a st System • HRRR - High Resolution R a pid Refresh
  23. © 2025 EARTHMOVER PBC EARTHMOVER.IO re a n a lysis

    → consistent view of long-term historic a l record  C a reful qu a lity control of observ a tions  Physic a lly consistent, g a p-free, jump-free record  H a rmonized sp a tiotempor a l grid  Suit a ble for long-term clim a te studies Credit: ECMWF
  24. © 2025 EARTHMOVER PBC EARTHMOVER.IO popul a r re a

    n a lysis d a t a products  ECMWF ERA5  NASA MERRA2  NCEP North Americ a n Region a l Re a n a lysis  JRA - 55: J a p a nese 55-ye a r Re a n a lysis, Ne a r Re a l-Time D a t a  ECCO: Estim a ting the Circul a tion a nd Clim a te of the Oce a n  … a nd m a ny m a ny more! Active rese a rch topic
  25. © 2025 EARTHMOVER PBC EARTHMOVER.IO beyond we a ther timesc

    a les Credit: Luk a s a nd P a yton (2020) vi a Color a do River Science Wiki
  26. © 2025 EARTHMOVER PBC EARTHMOVER.IO clim a te projections structur

    a l uncert a inty (model in a ccur a cies) forcing uncert a inty (emissions p a thw a y) Intern a l v a ri a bility Credit: IPCC AR4 Fig. 11.8
  27. © 2025 EARTHMOVER PBC EARTHMOVER.IO clim a te ch a

    nge imp a cts https://edition.cnn.com/ https://www.wsj.com
  28. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP: Coupled Model Intercomp a

    rison Project  Intern a tion a l e ff ort by WCRP to coordin a te clim a te modeling e ff orts  Pre-de fi ned emissions scen a rios a nd experiment protocols  E a ch modeling center runs their own models  D a t a st a nd a rdiz a tion  Beg a n in 1995  CMIP6 out; CMIP7 beginning
  29. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

     M a ny 100,000s of individu a l d a t a sets  E a ch d a t a set is identi fi ed by a unique id, consisting of 'f a cets'  F a cets a re p a rt of CMIP controlled voc a bul a ry (https://wcrp-cmip.github.io/CMIP6_CVs/) https://wcrp-cmip.org/cmip-data-access/#access-routes CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used
  30. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    → institution https://wcrp-cmip.org/cmip-data-access/#access-routes CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used https://wcrp-cmip.org/map/#map_of_modelling_centres_and_esgf_nodes
  31. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    → source https://wcrp-cmip.org/cmip-data-access/#access-routes CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used https://wcrp-cmip.org/map/#map_of_modelling_centres_and_esgf_nodes
  32. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    https://wcrp-cmip.org/cmip-data-access/#access-routes CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used → experiment
  33. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    https://wcrp-cmip.org/cmip-data-access/#access-routes CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used Hingray and Saïd 2014 → member
  34. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

     V a ri a ble n a mes a re st a nd a rdized using the CMOR (https://cmor.llnl.gov/) libr a ry. https://expearth.uib.no/?page_id=28 CMIP Cycle MIP activity Modelling Center Model Code Experiment/forcing scenarios Ensemble member Output Variable Model Grid CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-CM4.ssp585.r1i1p1f1.Omon.thetao.gn mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version di ff erent simulations components of a single simulation example MIP table used → d a t a set
  35. © 2025 EARTHMOVER PBC EARTHMOVER.IO E a rth System Grid

    Feder a tion → CMIP D a t a Distribution System  Feder a tion of n a tion a l l a bs a nd public-sector a gencies  Peer-to-peer d a t a sh a ring system b a sed on NetCDF fi les  D a t a c a t a log a nd se a rch c a p a bilities
  36. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    : Ch a llenges  D a t a a rchive is 20 PB!  D a t a must be downlo a ded to loc a l stor a ge a nd org a nized in order to be used for a n a lysis.  This cre a tes a l a rge overhe a d for working with CMIP d a t a  Individu a l a ccess/d a t a cle a ning a ppro a ches might be incomp a tible, hindering reus a bility/reproducibility ESGF Custom Code Custom Code Custom Code University Lab Industry ❌ ✋🚫
  37. © 2025 EARTHMOVER PBC EARTHMOVER.IO CMIP d a t a

    : Vision ESGF Custom Code Custom Code Custom Code University Lab Industry ❌ ✋🚫 Cloud N a tive D a t a Repository CREDIT: JULIUS BUSECKE
  38. E a rth System d a t a workflows a

    re p a inful → the st a tus quo MY SERVER
  39. E a rth System d a t a workflows a

    re p a inful 1 - DATA INGESTION Downlo a d a bunch of files from d a t a providers in form a ts like Grib, NetCDF, HDF. ☹ DATA PROVIDER → the st a tus quo
  40. E a rth System d a t a workflows a

    re p a inful 1 - DATA INGESTION Downlo a d a bunch of files from d a t a providers in form a ts like Grib, NetCDF, HDF. ☹ DATA PROVIDER → the st a tus quo 2 - DATA CLEANING Wr a ngle downlo a ded files into some sort of org a nize structure. H a rmonize inconsistencies a cross files. 😫
  41. E a rth System d a t a workflows a

    re p a inful 1 - DATA INGESTION Downlo a d a bunch of files from d a t a providers in form a ts like Grib, NetCDF, HDF. ☹ DATA PROVIDER → the st a tus quo 2 - DATA CLEANING Wr a ngle downlo a ded files into some sort of org a nize structure. H a rmonize inconsistencies a cross files. 😫 3 - ANALYSIS / MODELING The fun p a rt. 🎉
  42. E a rth System d a t a workflows a

    re p a inful 1 - DATA INGESTION Downlo a d a bunch of files from d a t a providers in form a ts like Grib, NetCDF, HDF. ☹ DATA PROVIDER → the st a tus quo 2 - DATA CLEANING Wr a ngle downlo a ded files into some sort of org a nize structure. H a rmonize inconsistencies a cross files. 😫 3 - ANALYSIS / MODELING The fun p a rt. 🎉 4 - SHARE REPRODUCIBLE RESULTS Ye a h right! 😂
  43. Wh a t if we could stop thinking a bout

    files? Wh a t if we could query E a rth System d a t a like a d a t a b a se?
  44. Confidential — Please do not distribute 54 E a rth

    system d a t a a re multidimension a l, not t a bul a r ch a llenge D a t a systems designed for typic a l business d a t a (t a bles / d a t a fr a mes) don’t work for multidimension a l d a t a .
  45. © 2025 EARTHMOVER PBC EARTHMOVER.IO E a rthmover’s Solution →

    The Cloud Pl a tform for We a ther a nd Clim a te D a t a connectors for common we a ther a nd clim a te d a t a sources a nd form a ts ingestion engine query engine stor a ge engine e ff icient, perform a nt cloud n a tive stor a ge a nd c a t a log integr a tions with popul a r d a t a science a nd GIS tools public cloud infr a structure
  46. AMS 2024 PRESENTATION EARTHMOVER.IO who is Arr a yl a

    ke for?  Comp a nies l a rge a nd sm a ll System of record for your business-critic a l we a ther, clim a te a nd geosp a ti a l d a t a .  Public sector Use Arr a yl a ke to dissemin a te a n a lysis-re a dy, cloud-optimized d a t a to your t a rget users.  Ac a demi a Build a d a t a l a ke to support your dep a rtment’s rese a rch a nd educ a tion.
  47. pl a net a ry-sc a le d a t

    a feder a tion in the cloud vision Se a mless exch a nge of d a t a a cross a c a demi a , government, a nd industry will empower reproducible open science a nd a cceler a te clim a te ch a nge solutions. University L a b AI St a rtup Big Tech Co. Gov’t Agency NGO