φοδҙࢥܾఆΛಛఆͷํʹม͑ΔબΞʔΩςΫνϟͷཁૉ <> u ϒʔετೝతٕྔΛߴΊΔ·ͨ ֫ಘ͢Δ͜ͱͰ߹ཧతͳҙࢥܾఆʹಋ͘<> u ख़ߟΛଅ͢ <> ਓ ؒ ʹ հ ೖ AI UI u ೝόΠΞεͷӨڹΛܰݮͨ͠ϥϕϧΛ༧ଌ͢ΔཧϞσϧ [3, 4] u ೝόΠΞεܰݮͷͨΊͷΫϥυιʔγϯάͰͷνΣοΫϦετ [11] u ϊΠζͷ͋Δσʔλʹରͯ͠ؤ݈ͳػցֶशϞσϧ [5] u গσʔλʹରͯ͠ؤ݈ͳػցֶशϞσϧ few-shot learning, semi/weakly-supervised, domain adaptation, self-supervised, … u Human-in-the-Loop ػցֶश [6] u VASͷઃܭͷఏҊ [1] Γºɺ͕ݟ͑ΔಈతεϥΠμʔ ̋ɺ ଳঢ়ϥϕϧ2ͭͷεϥΠμʔ ̋ u ՃઃใఏࣔͰରॲ [2] [1] Matejka, J., Glueck, M., Grossman, T., & Fitzmaurice, G. (2016, May). The effect of visual appearance on the performance of continuous sliders and visual analogue scales. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 5421-5432). [2] Hube, C., Fetahu, B., & Gadiraju, U. (2019, May). Understanding and mitigating worker biases in the crowdsourced collection of subjective judgments. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-12). [3] Zhuang, H., Parameswaran, A., Roth, D., & Han, J. (2015, August). Debiasing crowdsourced batches. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1593-1602). [4] Gemalmaz, M. A., & Yin, M. (2021). Accounting for Confirmation Bias in Crowdsourced Label Aggregation. In IJCAI (pp. 1729-1735). [5] Song, H., Kim, M., Park, D., Shin, Y., & Lee, J. G. (2022). Learning from noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems [6] .Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 56(4), 3005-3054. .[11] Draws, T., Rieger, A., Inel, O., Gadiraju, U., & Tintarev, N. (2021, October). A checklist to combat cognitive biases in crowdsourcing. In Proceedings of the AAAI conference on human computation and crowdsourcing (Vol. 9, pp. 48-59). [7] Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth and happiness. Simon & Schuster [8] Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering good decisions. Perspectives on Psychological Science, 12 (6), 973–986. [9] O’Sullivan, E. D., & Schofield, S. J. (2019). A cognitive forcing tool to mitigate cognitive bias–a randomised control trial. BMC medical education, 19, 1-8.[10] Kameda, T., Toyokawa, W., & Tindale, R. S. (2022). Information aggregation and collective intelligence beyond the wisdom of crowds. Nature Reviews Psychology, 1(6), 345-357 ू ஂ ݸ ਓ u ूஂతҙࢥܾఆʹΑΓਖ਼֬ੑ্͕͢Δ݅ͷཏతݕ౼ <>