患者の院内死亡率の予測 [1] 医師の判断支援、医療資源の割り当て支援の基盤 患者の再入院予測 [2] 死亡率改善・医療費削減のための基盤 プライバシー保護生存時間分析手法の開発 [3] 医療情報(機微情報)を共有しない分析手法 機械学習ベンチマーク(HiRID, MIMIC-III) [4, 5] データ前処理のためのパイプライン(MIMIC-IV) [6] [1] Zou, M., An, Y., Kuang, H., & Wang, J. (2023). LGTRL-DE: Local and Global Temporal Representation Learning with Demographic Embedding for in- hospital mortality prediction. Journal of Biomedical Informatics, 143, 104408. [2] Pishgar, M., Theis, J., Del Rios, M., Ardati, A., Anahideh, H., & Darabi, H. (2022). Prediction of unplanned 30-day readmission for ICU patients with heart failure. BMC medical informatics and decision making, 22(1), 117. [3] Imakura, A., Tsunoda, R., Kagawa, R., Yamagata, K., & Sakurai, T. (2023). DC-COX: Data collaboration Cox proportional hazards model for privacy- preserving survival analysis on multiple parties. Journal of Biomedical Informatics, 137, 104264. [4] Yèche, H., Kuznetsova, R., Zimmermann, M., Hüser, M., Lyu, X., Faltys, M., & Rätsch, G. (2021). HiRID-ICU-Benchmark--A Comprehensive Machine Learning Benchmark on High-resolution ICU Data. arXiv preprint arXiv:2111.08536. [5] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram Galstyan. Multitask learning and benchmarking with clinical time series data. Scientific data, 6(1):1–18, 2019. [6] Gupta, M., Gallamoza, B., Cutrona, N., Dhakal, P., Poulain, R., & Beheshti, R. (2022, November). An extensive data processing pipeline for mimic-iv. In Machine Learning for Health (pp. 311-325). PMLR.