Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロテニスにおいて疲れが勝敗に与える影響を定量化してみる
Search
MIZUTANI RYOTA
November 02, 2019
2
1.2k
プロテニスにおいて疲れが勝敗に与える影響を定量化してみる
Sports Analyst Meetup #5(
https://spoana.connpass.com/event/148275/)で発表したLT資料です
。
MIZUTANI RYOTA
November 02, 2019
Tweet
Share
More Decks by MIZUTANI RYOTA
See All by MIZUTANI RYOTA
JPEGの仕組みと圧縮品質が CV性能に与える影響について
rmizuta3
0
670
言語モデルにおける推論パラメータと小説生成への適用について
rmizuta3
0
650
PythonユーザによるRust入門
rmizuta3
16
8.1k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Code Review Best Practice
trishagee
74
19k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
121
20k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Code Reviewing Like a Champion
maltzj
527
40k
Side Projects
sachag
455
43k
Documentation Writing (for coders)
carmenintech
76
5.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Become a Pro
speakerdeck
PRO
30
5.7k
RailsConf 2023
tenderlove
30
1.3k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
ϓϩςχεʹ͓͍ͯ ർΕ͕উഊʹ༩͑ΔӨڹΛ ఆྔԽͯ͠ΈΔ 4QPSUT"OBMZTU.FFUVQ ਫ୩྄ଠ !SNJ[VUB
ࣗݾհ • ࢯ໊ɿਫ୩྄ଠ(@rmizuta3) • ͓ࣄɿϚʔέςΟϯάܥاۀͰσʔλ׆༻Λߟ͑Δਓ • झຯɿσʔλੳɺςχε • εϙʔπྺɿ •
ςχεྺ15 • େֶ࣌ମҭձॴଐ • ;͡ΈࢢࢢຽେձγϯάϧεBڃ̏Ґ
ʮۋ৫ർΕ͍ͯͨʯ • ݄̒ͷશถΦʔϓϯ४ʑܾউͰ6-1, 6-1, 6-3Ͱۋ৫Λഁͬ ͨ࣌ͷφμϧͷίϝϯτ • ४ʑܾউ·Ͱͷ4ࢼ߹ͷ߹ܭࢼ߹࣌ؒφμϧͷ9࣌ؒ ʹର͠ɺۋ৫13࣌ؒΛ͍͑ͯͨɻ ग़యɿIUUQTOFXTUFOOJTOFUOFXTUPEBZIUNM
ςχεͷࢼ߹ͷಛ • ࢼ߹͕࣌ؒৼΕ෯͕େ͖͍ • 4େେձͰ̑ηοτϚον̏ηοτઌऔ • 1࣌ؒڧͰऴΘΔ͜ͱ͋Ε5࣌ؒҎ্͔͔Δ߹͋Δ ͷ̐େେձͷࢼ߹࣌ؒ
ςχεͷࢼ߹ͷಛ • େձͷࢼ߹ִ͕ؒ͘ɺଟ͍ɻ • େձ։࠵ظؒ̎िؒɻͦͷதͰ࠷େ̓ࢼ߹Λઓ͍ ൈ͘ඞཁ͕͋Δ ճઓ
ճઓ ճઓ ճઓ ճઓ ճઓ ճઓ ճઓ શͷఔ ճઓ ४ʑܾউ ४ʑܾউ ४ܾউ % ४ܾউ 4 ܾউ % ܾউ 4
ർΕͷӨڹ͋Γͦ͏ɻ ͕࣮ͩࡍͲͷ͘Β͍ͷӨڹ͕ ͋ΔͷͩΖ͏͔ʁ
ੳํ • ϩδεςΟοΫճؼΛ༻͍ͯർΕ͕উʹ༩͑ΔӨڹΛݕূ • ճؼࣜ y = 1 1 +
exp( − (a1 − a2 )x1 + (b1 − b2 )x2 ) ɹɿউഊ PS ɹɿબखͷڧ͞ɿબखͷڧ͞ ɹɿબखͷർ࿑ɹɹɿબख̎ͷർ࿑ a1 a2 b2 b1 y
બखͷڧ͞ • ΠϩϨʔςΟϯάͷσʔλΛ༻ • https://ultimatetennisstatistics.com/ ͷΠϩϨʔςΟϯά
બखͷർ࿑ • ֤ࢼ߹ͷࢼ߹࣌ؒͷσʔλΛར༻ • https://github.com/JeffSackmann/tennis_atp • େձظؒதɺࢼ߹ͷർΕੵ͢Δ͕ɺճ෮ͷྔߟྀ ͍ͨ͠
બखͷർ࿑ͷߟ͑ํ ࢼ߹࣌ؒ ർ࿑ ճઓ ճઓ
ճઓ ർ࿑લࢼ߹ͷࢼ߹࣌ؒ ɹɹɹɹલࢼ߹ͷർ࿑ ർ࿑ଘ ଘ͕ͷ߹
ർ࿑ଘͷࢉग़ • ർ࿑ଘΛมԽͤ͞ͳ͕ΒϩδεςΟοΫճؼΛ࣮ࢪ • ༧ଌͱ࣮ࡍͷͷRMSE͕࠷খʹͳΔͷΛબ ർ࿑ଘ͕̔ͷ࣌ ࠷ͯ·Γ͕ྑ͍
ϩδεςΟοΫճؼͷ࣮ߦ • 2018ͷ4େେձͷ482ࢼ߹ͷσʔλΛ༻ y = 1 1 + exp( −
(a1 − a2 )x1 + (b1 − b2 )x2 ) ɹɿউഊ PS ɹɿબखͷڧ͞ɿબखͷڧ͞ ɹɿબखͷർ࿑ɹɹɿબख̎ͷർ࿑ a1 a2 b2 b1 y
݁Ռ ർ࿑ʹ͕ࠩ͋Δͱɺ ͕ࠩͳ͍߹ͱൺֱͯ͠উ͕ഒʹ ճؼ Φοζൺ
݁Ռͷαϯϓϧ ϕʔεͷۋ৫WTφμϧͷউͱർ࿑ͷࠩͷؔ
·ͱΊ • ςχεʹ͓͍ͯർΕ͕উʹ༩͑ΔӨڹΛϩδεςΟΫճ ؼΛ༻͍ͯఆྔԽͨ͠ • ർ࿑ͷ͕ࠩ100͋Δ߹ɺ͕ࠩͳ͍߹ͱൺֱͯ͠উ ͕60%ʹݮগ͢Δ͜ͱ͕Θ͔ͬͨ • ଥੑͷ֬ೝͷͨΊผͷΞϓϩʔνͰͬͯΈ͍ͨ