“Understanding Diffusion-based Representation Learning via Low-Dimensional Modeling”, Xiao Li et al., NeurIPSW, 2025 [3] ”SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations”, Chenlin Meng et al., ICLR, 2022 [4] “Guided Image Synthesis via Initial Image Editingin Diffusion Model”, Jiafeng Mao et al., ACM MM, 2023 [5] “The Silent Assistant: NoiseQuery as Implicit Guidance forGoal-Driven Image Generation”, Ruoyu Wang, arXiv preprint, 2025 [6] “TKG-DM: Training-free Chroma Key Content Generation Diffusion Model”, Ryugo Morita et al., CVPR, 2025 [7] “Explaining the sdxl latentspace”, Timothy Alexis Vass, 2024, url:https://huggingface.co/blog/TimothyAlexisVass/explaining- the-sdxl-latent-spa [8] “Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise”, Arpit Bansal et al., NeurIPS, 2023 [9] ”Diffusion is not necessarily Spectral Autoregression”, Fabian Flack, 2025, url: https://www.fabianfalck.com/posts/spectralauto [10] “A Fourier Space Perspective on Diffusion Models“, Fabian Flack, arXiv Preprint, 2025 [11] ”Improving the Diffusability of Autoencoders”, Ivan Skorokhodov et al., ICML, 2025 [12] ”Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction”, Keyu Tian et al., NeurIPS, 2024 参考文献 15