→ R ... monotone submodular function over integer lattice • x ≤ y =⇒ f(x) ≤ f(y) • f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (∀x, y ∈ ZS) (x ∨ y : elem-wise max, x ∧ y : elem-wise min) cf. submodularity for set functions: f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) (∀X, Y ⊆ S) c ∈ ZS + , w ∈ ZS + , B ∈ Z≥0 Maximize f(b) subject to 0 ≤ b ≤ c s∈S w(s)b(s) ≤ B (knapsack constraint) b ∈ ZS 7 / 16