Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIレビュアーをスケールさせるには / Scaling AI Reviewers
Search
technuma
August 19, 2025
Programming
2
400
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
August 19, 2025
Tweet
Share
More Decks by technuma
See All by technuma
GitHubでAIレビューを組み込む 〜Claude Code Actionデモ&AIエージェントの設計方針〜 / Claude Code Action for beginners
technuma
1
100
品質は設計でつくり込む / design in quality
technuma
32
17k
エンジニアの仕事を機械の番人から仕組み設計者へ / From Machine Keeper to System Designer
technuma
2
270
Devinにファーストレビューをさせ、コードレビューを効率化するには / Using Devin to Make Code Reviews More Efficient
technuma
3
2.4k
開発生産性を計測し、開発組織の当たり前基準を上げる
technuma
2
610
Other Decks in Programming
See All in Programming
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
150
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
310
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
210
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
460
SQL Server 2025 LT
odashinsuke
0
140
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
1k
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
180
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
210
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
140
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.3k
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
Featured
See All Featured
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
130
Building AI with AI
inesmontani
PRO
1
620
How to build a perfect <img>
jonoalderson
1
4.8k
Embracing the Ebb and Flow
colly
88
4.9k
The untapped power of vector embeddings
frankvandijk
1
1.5k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
230
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
120
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
190
The agentic SEO stack - context over prompts
schlessera
0
590
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
38
Transcript
AIレビュアーをスケールさせるには レビュー観点を増やしても速度と精度が落ちない仕組みの実現 株式会社グロービス 大沼和也 1
目指したもの:スケールの二大要素 レビュー観点を増やしても 1. 速度が落ちない 2. 精度が落ちない 2
Devinでの試験導入(2025年1月頃) 成果 人間の見落としを補完する有機的レビュー 直面した課題 Knowledge増加による性能低下 出力の不安定性 コントロールの難しさ コストが高い 3
Roo Codeでの改善(2025年4月頃) 技術的ブレイクスルー Subtask(Boomerang Tasks)によるコンテキスト分離 LLMの仕事をTestable化 手元での検証容易性 残された課題 CI統合の困難さ 非同期実行不可による速度限界
4
Claude Code Actionによる解決(2025年6月頃) 二大条件のクリア Subagents機能 + 非同期実行 精度と速度の両立を実現 運用面での改善 CI完全統合
デバッグの容易化 CIでも手元でも、同じレビューを実行可能 5
Claude Code Action によるレビューで起きていること 機能開発をしているバックエンドエンジニア(SRE,FEなど)以外からの機能追加 やちょっとした修正をするためのPRが増加 文言修正レベルであればPOからもPRが出る 慣れていない開発者でも、レビュー後のちょっとした修正まで一気通貫でClaude Code Actionが対応
6
実装事例1:Dependabot PR レビューの自動化 Before 膨大な依存関係の更新を人手でレビュー リリースノートの確認作業が手間 潜在的な問題の見落としリスク After パッケージアップデートの共通作業をAIに委譲 自動でリリースノート翻訳・issue検索など情報収集
→人間が集まった情報をもとにリスク評価を実施 7
Dependabotレビュー の実際の動作 AIが自動で実行すること リリースノートを日本語で要約 破壊的変更の検出 セキュリティ修正の確認 アップグレード後のIssue調査 8
関連Issue・PRの自動調査 人によってやるやらがブレてい た作業を自動化 リリース後に作成されたIssueを検出 既知の問題やバグの事前把握 9
DevExチームの工夫と評価 工夫したポイント リリースノートの日本語翻訳でマークダウン形式を維持 GitHub CLI利用を指定してWebSearchより確実な検索 AIだけでなく、人間が見てもわかるような手順書のように指示を書いている 不具合発見ができる可能性が高まる「行動」をAIに指示 良いところや感想 新規メンバーの学習にも活用可能 パッケージアップデートの標準化:
組織全体で200件/月程度のPR量 カバレッジ90%のCIはやはり大事 10
実装事例2:Subagent を活用したレビュー レビューの分散並列処理 非同期実行で速度問題を解決 コンテキストを適切に分離して精 度向上 モード別に特化したレビュー コード責務特化 FlakyTests特化 機密情報特化
見落としがちなパターン特化 11
Subagents の詳細 Orchestratorによる制御 PRの内容を分析 自動的にSubagentを選定し依頼 Subagentsからの結果を統合してレビューを返却 開発時の強み ローカルでもコマンドでレビュー実行可能 CIと同じレビューを手元で事前確認 高速なフィードバックループの実現
12
サブエージェントのデ バッグ容易性 GHAログをもとに手元で Task単位でのデバッグ可能 Task Parameters subagent_type description prompt Result
詳細なレビュー結果 問題点と良い点の明記 13
AIレビューの精度測定 とテスタビリティ 定量的な精度測定の実現 PRコメント単位での採用率を測 定 →レビュー精度向上につなげる 14
精度測定システムの特徴 採用率のモニタリング カテゴリ別の強み・弱みの可視化 継続的な改善サイクル 実装の容易さ この測定自体もClaude Codeで簡単に構築可能 15
まとめ:スケールするAIレビュアーの実現 達成したこと 速度と精度の両立を実現 人間とAIの協働モデルの確立 継続的改善のサイクル構築 今後の展望 さらなる精度向上 ドメイン特化型レビュアーの開発 全チーム展開に向けて準備中 16
ご清聴ありがとうございました 17