▪2 for low grade solid organ injuries (liver, spleen, kidney). ▪4 for high grade solid organ injuries. ▪2 for bowel injuries. ▪6 for extravasation. ▪6 for the auto-generated any_injury label. ▪Any_injuryは maxorgan 1-healthy から自動計算される メトリック
binary targets. ▪[kidney/liver/spleen]_[healthy/low/high] - The three injury types with three target levels. ▪[train/test]_images/[patient_id]/[series_id]/[image_instance_n umber].dcm ▪CTスキャン画像(voxel)。1 patientにつき1 or 2 study ▪image_level_labels.csv ▪Bowel, extravasation injuryに関する画像レベルのラベル ▪segmentations ▪Liver, spleen, left kidney, right kidney, bowelのセグメンテーションラベル。 206ファイルだけ データ
a board-certified radiologist. I am a US radiology resident at the beginning of my 3rd year of residency. However, I am confident that I correctly identified the finding in >95% of images. Active Extravasation Bounding Boxes https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/discussion/441402
each slice using image copy detection model ▪calculate similarity matrix between two voxels ▪binarize the above matrix by taking max in horizontal or vertical direction ▪detect line (= correspondence of two voxels) using Hough Transformation What Does Not Work https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/discussion/448282
+ RNN model ▪Best model uses 11 frames sampled uniformly in the organ ▪Different number of frames for ensembling. ▪coatnet_1_rw_224 + RNN was best. I used different heads (RNN + attention, transformers) and other models CoatNet variants for ensembling. ▪3 class cross-entropy loss. 2nd Place Solution – Crop Model
サイズ等を色々変えたモデルをweighted average ▪Bowel/extravasationのimage level labelでpretrain(一部) ▪特に効果があったもの ▪masking for liver model ▪custom sampler for all class models ▪Organ毎に入力サイズを変更しているので必要 ▪2types of crops 3rd Place Solution https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/discussion/447464
LSTM with cropped volumes and study label ▪Bowel Model ▪30 sliceを抽出、study label + image label ▪Extra Model ▪隣接5 sliceの2D CNNをまず学習 ▪その後sequenceモデル(GRU)を学習 6th Place Solution