Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Charty on Rails - Railsdm 2019
Search
秒速284km
March 23, 2019
Programming
3
2.2k
Charty on Rails - Railsdm 2019
Charty on Rails - Railsdm 2019
秒速284km
March 23, 2019
Tweet
Share
More Decks by 秒速284km
See All by 秒速284km
fukuoka_ruby_2019
284km
0
180
Rubyアソシエーション開発助成成果報告会
284km
0
2.2k
Charty - Visualize Real-world Data with Ruby
284km
1
2.5k
Charty - Visualizing your data in Ruby
284km
0
2.4k
.so にして色々な言語から便利にのっかろう
284km
0
76
Pragmatic Charty
284km
0
2.3k
Charty with Rails
284km
1
74
Charty (RubyGrant 2018)
284km
0
2.4k
Better CSV processing with Ruby 2.6
284km
0
95
Other Decks in Programming
See All in Programming
オープンソースソフトウェアへの解像度🔬
utam0k
2
110
あなたの知らない「動画広告」の世界 - iOSDC Japan 2025
ukitaka
0
430
XP, Testing and ninja testing ZOZ5
m_seki
3
390
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
7
1.6k
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
760
Conquering Massive Traffic Spikes in Ruby Applications with Pitchfork
riseshia
0
160
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
940
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
240
CSC305 Lecture 01
javiergs
PRO
1
400
ポスターセッション: 「まっすぐ行って、右!」って言ってラズパイカーを動かしたい 〜生成AI × Raspberry Pi Pico × Gradioの試作メモ〜
komofr
0
1.1k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
200
どの様にAIエージェントと 協業すべきだったのか?
takefumiyoshii
2
620
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Scaling GitHub
holman
463
140k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
RailsConf 2023
tenderlove
30
1.2k
For a Future-Friendly Web
brad_frost
180
9.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Transcript
$IBSUZPO3BJMT 3BJMTEN ඵ!LN
None
None
- ͕ࣗલʹਐΉͨΊͷൃද - ࣗҎ֎ͷલʹਐΈ͍ͨਓ͕લ ʹਐΈ͘͢ͳΔൃද - ։ൃʹࢀՃ͢Δਓ͕૿͑Δൃද ࢿྉΛ࡞Γऴ͑ɺࠓ͜Μͳൃද͕ Ͱ͖ͨΒ͍͍ͳͱߟ͍͑ͯ·͢
- Charty ͬͯɺ͜͏͍͏ͷͳΜͩʂ - ͜ͷਓ (ͨͪ) ɺͦ͏͍͏׆ಈΛͯ͠ ͍ΔΜͩͶʂ - ࢲ։ൃ͢Δ͜ͱʹڵຯ͋Δ͔Βɺ
ࢀՃͯ͠ΈΑ͏ʂ 30 ޙ͜͏ͳͬͨΒ͍͍ͳ
·ͣݟͯ΄͍͠ σϞΛ͠·͢ʂʂ
red-data-tools/Charty 284km/benchmark_driver- output-charty
ࠓ͜ͷɺ Charty ͷ͓
What is Charty ? Charty is an open-source Ruby library
for visualizing your data in a simple way. https://github.com/red-data-tools/charty
In Charty, you need to write very few lines of
code for representing what you want to do. It lets you focus on your analysis of data, instead of plotting. i.e. We aim at convenience. What Charty is focusing on
1/11 => Intermediate Report 3/11 => Final Report https://www.ruby.or.jp/en/news/20181106 ΘΓͱΒΕ͍ͯͳ͍ʁΑ͏ͳͷͰհ͠·͢
Ruby Association Grant 2018
Charty ͷ ಛ
Convenient 2 ͭͷநϨΠϠΛ͍࣋ͬͯΔ ͕ Charty ͷಛͰ͢ - Data Abstraction Layer
- Plotting Abstraction Layer
Abstraction Layer - Data Abstraction Layer - Input (Data Structure)
- Plotting Abstraction Layer - Output (Plotting Library)
Abstraction Layer ݴޠΘͣɺ༷ʑͳ σʔλߏɺ Visualization Library Λ ͖ͳΈ߹ΘͤͰ͏ ͜ͱΛՄೳʹ͢Δɻ
Data Abstraction Layer ݱࡏରԠ͍ͯ͠Δσʔλߏɺ - Daru::DataFrame - Numo::NArray - NMatrix
- ActiveRecord
Data Abstraction Layer ݱࡏରԠ͍ͯ͠Δσʔλߏɺ - Daru::DataFrame => pandas - Numo::NArray
=> numpy.ndaray - NMatrix => numpy.ndaray - ActiveRecord
Plotting Abstraction Layer - Matplotlib - Gruff - rubyplot
Plotting Library - Matplotlib - Python ͷϥΠϒϥϦɻଟػೳɻҰ൪ଟ͘ͷάϥϑͷछྨΛϓϩοτՄೳɻ - Gruff -
Ruby ͷ plotting libraryɻRMagic (Imagimagic ʹґଘ͍ͯ͠Δ) - Mac Λ͍ͬͯΔํ default Ͱ Imagemagic 7 ͕ install ͞ΕΔ͚Ͳ RMagic ͕ ରԠ͍ͯ͠ͳ͍ɻ - Watson ͞Μ͕͜ͷลΓͷ։ൃΛਐΊͯ͘Ε͍ͯΔɻWatson ͞Μ͋Γ͕ͱ͏
Plotting Library - rubyplot - GSoC 2018 Ͱ࠾͞ΕͨϓϩδΣΫτͰɺܧଓͯ͠։ൃதͷ Plotting Library
- Charty ͱ rubyplot ͷ࿈ܞΛ͢Δ·ͰʹɺSciRuby ͷϑΥʔϥϜͰձΛͨ͠ ΓɺRed Data Tools ͷ։ൃͷू·Γʹ࡞ऀͷ Sameer ͕དྷͯ͘ΕͨΓͱɺͦ͏͍ ͏ڠྗ͕͋ͬͨΓͨ͠ͷ͓͠Ζ͔ͬͨͰ͢ɻ͓͠Ζ͔͚ͬͨͩ͡Όͳ͘ ͯɺ࣮ࡍ͜͏͍͏ྲྀΕΛগ͕ͣͭࣗͨͪ͠࡞͍ͬͯ͘ͱ͍͏ͷେࣄͩͱࢥ ͏ΜͰ͢ΑͶɻେࣄͩͱࢥ͏͔ΒɺࣗʹͰ͖ͦ͏ͳػձ͕ͷલʹ͋ͬͨͷ ͰͬͯΈ·ͨ͠ɻ
Abstraction Layer Python ͷϥΠϒϥϦ Holoviews ͷࢥʹ͍ۙɻ Charty ͷ౷Ұ͞Εͨ෦ Interface Λߟ͑Δࡍʹɺ
Holoviews ͷίʔυΛࢀߟ ʹͨ͠
ࢀߟʹͨ͠ϥΠϒϥϦͳͲ - holoviews (Python) - Gadfly.jl (Julia) - ggplot2 (R)
- Julia Package GR (GR Framework) - Python Package GR (GR Framework) - PyCall Λհͯ͠͏ϥΠϒϥϦͷ࣮ (matplotlib.rb, matplotlib, pyplot ͱ͔) - ଞʹ͍Ζ͍Ζ……
ͳʹ͕Ұ൪͍ͨΜ͔ͩͬͨ @mrkn ͕ॻ͍ͨ͜ͱͷҙຯΛΛͬͯཧղͨ͠ https://magazine.rubyist.net/articles/0055/0055-pycall.html ͦͷதͰಛʹɺ”ಓ۩Λ࡞Ζ͏ͱ͢Δਓ͕͍ͳ͍” ͷ෦ɻ
͋·ΓҰൠతʹ͑ͳ͍γϯϓ ϧͳπʔϧΛ࡞Ζ͏ͱ͢Δਓ͍ ͯྑ͍ͱࢥ͍·͢ɻ ͦͷΑ͏ͳ ਓͰ͢Β΄ͱΜͲଘࡏ͠ͳ͍ͷ͕ ݱࡏͷ Ruby ίϛϡχςΟͷঢ়گͰ ͢ɻͳͥͳͷͰ͠ΐ͏ʁ
ͦΕɺ࡞Γ࢝ΊΑ͏ ͱͨ͠ਓʹର͢Δେ͖ ͳোน͕ 2 ͭଘࡏ͢Δ ͔ΒͰ͢ɻ
োนͷ 1 ͭɺྻάϥϑΟοΫεػ ೳͳͲɺجૅͱͳΔػೳΛఏڙ͢ΔϥΠϒϥϦ ͷఆ൪͕ଘࡏ͠ͳ͍͜ͱͰ͢ɻ ͦͷͨΊɺԿ͔ Λ࡞Γ࢝ΊΔલʹɺݱࡏͲͷΑ͏ͳϥΠϒϥϦ ͕ଘࡏͯ͠ɺͦΕͧΕ͕ͲΜͳػೳΛఏڙͯ͠ ͍ͯɺͦΕΒͷ࣮Ͳͷ͘Β͍৴༻Ͱ͖Δͷ ͔Λௐࠪ͠ͳ͚ΕͳΒͳ͍ͷͰ͢ɻ
໘ष͘ ͯͬͯΒΕ·ͤΜͶɻ
োนͷ 2 ͭɺࣄͰػցֶश౷ܭੳΛ ͍ͬͯΔਓͷଟ͕͘ࣄͰ Python R Λͬ ͍ͯͯɺRuby ͷͨΊʹࣗͰ࡞ͬͨͷΛ
ࣄͰ͑Δػձ͕΄ͱΜͲແ͍͜ͱͰ͢ɻ ϓϥ ΠϕʔτͰػցֶश౷ܭੳΛΔػձ͕͋ Δͱͯ͠ɺࣄͰ͍׳Ε͍ͯΔڥΛ͏ ํ͕ྑ͍ͱߟ͑Δਓଟ͍Ͱ͠ΐ͏ɻ
ͦΕͰ࣌ΑΓ ͍ͣͿΜָͳͷͩΖ͏͚ΕͲɺ ྫɿ PyCall ͕͋Δ͔ΒͶɻ Red Data Tools, SciRuby ͳͲͷ͕ؒ૿͍͑ͯΔ͔ΒڠྗՄೳ
Θ͔Βͳ͍͜ͱ͕ͨ͘͞Μ Ruby ʹݶΒͣ Visualization library ͷͲ͏ͳͷ͔ʁ ͳʹ͕ΘΕ͍ͯΔʁͦΕͳͥʁͳʹ͕ΘΕͳ͍ʁ ͲΕ͕༏Ε͍ͯΔʁͲΕ͕γϯϓϧʁͲΕ͕ະདྷ͕͋Δʁ ݱ࣮ੈքͰͷɺ࣮ࡍͷϢʔεέʔεʁʁʁ
ௐࠪʹཁ͢Δ࣌ؒ ͜Εʹඇৗʹ͕͔͔࣌ؒͬͨ͠ɺ ͜Ε͚͍ͩͬͯͯ GitHub ʹ͕ੜ͑·ͤΜ ʢผʹؾʹ͍ͯ͠ͳ͍͚ΕͲʣ ίϛοτ͕ੵΊ·ͤΜ ֎͔ΒݟͨΒɺίʔυॻ͍ͯΜͷʁঢ়ଶͷݫ͍͠ظؒ
Red Data Tools ͷϙϦγʔ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ͑ͯڠྗ͢Δ 2. ඇ͢Δ͜ͱΑΓखΛಈ͔͢͜ͱ͕େࣄ 3.
Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓখ͍͍ͯ͘͞ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌ͰͷࣝෆͰͳ͍ 5. ෦֎ऀ͔Βͷඇؾʹ͠ͳ͍ 6. ָ͘͠Ζ͏ʂ
Red Data Tools ͷϙϦγʔ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ͑ͯڠྗ͢Δ 2. ඇ͢Δ͜ͱΑΓखΛಈ͔͢͜ͱ͕େࣄ 3.
Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓখ͍͍ͯ͘͞ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌ͰͷࣝෆͰͳ͍ 5. ෦֎ऀ͔Βͷඇؾʹ͠ͳ͍ 6. ָ͘͠Ζ͏ʂ ·͋ɺίʔυ͕ޙ͔Βग़ͯ͘Δ͔ ΒͦΕͰ͍͍͔…ɻͱࢥ͍ͬͯ ͚ͨͲɺ ͦͷ࣌ظ 2, 5 ͋ͨΓΛؾΛ͚ͭ ͍ͯ·ͨ͠Ͷɻ ࣗͷϞνϕʔγϣϯΛԼ͛ͳ͍ ͜ͱΛԿΑΓ͍ͩ͡ʹͨ͠ɻ
݁ہԿΛࢥͬͯ׆ಈ͍ͯ͠Δͷ͔ͳ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ͑ͯڠྗ͢Δ 2. ඇ͢Δ͜ͱΑΓखΛಈ͔͢͜ͱ͕େࣄ 3. Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓখ͍͍ͯ͘͞ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌ͰͷࣝෆͰͳ͍
5. ෦֎ऀ͔Βͷඇؾʹ͠ͳ͍ 6. ָ͘͠Ζ͏ʂ ·͋ɺίʔυ͕ޙ͔Βग़ͯ͘Δ͔ ΒͦΕ͍͍͔…ɻͱࢥ͍ͬͯͨ ͚Ͳɺ ͦͷ࣌ظ 2, 5 ͋ͨΓΛؾΛ͚ͭ ͍ͯ·ͨ͠Ͷɻ ࣗͷϞνϕʔγϣϯΛԼ͛ͳ͍ ͜ͱΛԿΑΓ͍ͩ͡ʹͨ͠ɻ લʹਐΈ͍ͨͷͰ͋ͬͯɺͦͷͨΊʹͻͱͭͣͭੵΈ͋͛Δ ͔͠ͳ͍ͱࢥ͏ɻ Ͳ͏ͨ͠ΒੵΈ্͛ΒΕΔ͔ͬͯݴ͏ͱɺ࣮ߦͯ͠ɺվળͯ͠ɺ࣮ ߦͯ͠ɺͷ܁Γฦ͠ɻ ͦͷઌָ͕͠ΈͩͬͨΓɺ৴͡ΒΕΔͳΒͦΕΛࢭΊͨ͘ͳ͍ ͨͩͦ͏͍͏͜ͱ͚ͩΛେʹͯ͠ɺ͍ͳ͜ͱʹɺࠓಉ͡Α͏ ͳ͜ͱΛߟ࣮͑ߦ͢Δਓୡͱڠྗͯ͠ઌʹਐΊΔ͜ͱ͕ग़དྷ͍ͯΔ
ݱࡏͷঢ়ଶΛݴޠԽ ͯ͠ΈͨΒͦ͏ͳΓ ·ͨ͠ɻ
ਐΊํʹ͕ඞཁͩͬͨ͜ͱ - Plotting Library ͔Β࣮Λ͡Ίͨ - ͜ΕɺCharty ͷҰ൪ຊ࣭తͳಈ࡞ɺάϥϑΛඳը͢Δ͜ͱ͔ͩΒ - ݁Ռ(Ռ)
ͱͯ͠Ұ൪Θ͔Γқ͍ͱ͜Ζ͔ΒͲʔΜͱ࡞ͬͯখ͘͞ػೳՃ(վળ) ͍ͯ͘͠ɻͱ͍͏ͷࣗͷ Ϟνϕʔγϣϯҡ࣋ͷͨΊʹେࣄ - Ұͷ࡞ۀ࣌ؒݶΒΕ͍ͯͯɺࡉΕͷ࣌ؒͰ࡞ۀ͢Δ͜ͱ͋Δɻ - ࡞ۀ࠶։ͷෛՙΛԼ͛ɺͳΔ࣌ؒ͘ͰऴΘΔ୯ҐͷλεΫʹղͯ͠࡞ۀͷϦζϜΛ࡞Γ͘͢͢Δɻࣗ ΛϊηΔɻϞνϕʔγϣϯΛͳΔ͘Լ͛ͳ͍ɺͰ͖Ε্͛ΔɻࣗΛὃͯ͠Ϟνϕʔγϣϯ্͕͕͠ΔͳΒ͖ͬ ͱՌग़ΔͩΖ͏͔Βὃͪ͠Ό͙͑Β͍ͷؾ࣋ͪɻͦΕ͙Β͍Ϟνϕʔγϣϯͱ͍͏ͷେࣄͩͱײ͍ͯ͡Δɻ - ॱ൪తʹɺॲཧϑϩʔͷऴΘΓ (άϥϑඳը) ͔Β٧Ί͍ͯͬͨํ͕ޙΓ͕গͳ͍ͩΖ͏͔Βɻ(data abstraction layer, plotting abstraction layer ͲͪΒɺख୳ΓͰਐΊΔͱ͍͏ελʔτΛ͍ͬͯΔͷͰ) - σʔλߏ͕มΘ͔ͬͨΒϓϩοτํ๏ʹӨڹͪ͠Ό͍·ͨ͠ɻͱ͍͏ͷ͋ΓಘΔ͡Όͳ͍Ͱ͔͢ɻ
ͲͷΑ͏ʹਐΊ͔ͨ - Matplotlib ΛϦϑΝϨϯε࣮ͱͯ͠࠷ॳʹ࣮ͨ͠ - ͜Ε࣮ɺҰ൪࠷ॳ rubyplot ͔Β࣮Λ͡ΊͯޙΓΛͯ͠ɺMatplotlib ͔ Β࠶࣮͍ͯ͠Δɻ
- rubyplot ͕ Plotting Library ͱͯ͠αϙʔτ͍ͯ͠Δ backend Ͱ͋Δ GR Framework ͕ ັྗతͰ͍͍ͨɻͱ͍͏ͷ͕ɺCharty Λ࣮͠͡Ίͨ࣌ʹɺ࠷ॳʹඳ͍ͨΑͦ͞ ͏ͳ Charty ͷࡏΓํͩͬͨɻ͔ͩΒ rubyplot ͷίʔυશ෦ಡΜͰɺrubyplot ͷ։ൃʹ ඞཁͳΒՃΘΔؾͰ͍ͨɻ࣮ࡍɺPR ग़͠͡Ί͍ͯͨɻ - Charty Charty ͱͯ͠ɺബ͍ϥούʔͱͯ͋͠Δ͖ͱߟ͑͠ɺ͜ͷลΓ͔Β holoviews ͷΑ͏ͳࡏΓํΛҙࣝ࢝͠Ίͨɻ
͕͢ҙຯ͕͋Γͦ͏ͳ͜ͱ Data Visualization ʹ͍ͭͯɺϩΫʹΒͳ͍ঢ়ଶ͔Βελʔτͯ͠ɺ࣮·ͰͨͲΓண͍ͨͱ͍͏ ͜ͱ (Red Data Tools ͷϙϦγʔͷ 4.
Ͱ͢Ͷɻଟ͘ͷਓʹॿ͚ͯΒ͍ͨ͠) ࠷ۙͷճΓͰΑ͘ฉ͘ͷ͚ͩΕͲɺՌ͕ग़ͤΔ͕ࣗແ͍͔Βߦ͖͍͚ͨͲࢀՃ͠ͳ͍બΛ ͢Δͱ͔ɺΕΔΑ͏ʹͳΓ͍͚ͨΕͲɺ࢝ΊΒΕΔͷ͕·ͩແ͍͔ΒࢀՃͰ͖ͳ͍Ͱ͍Δɻͱ ͔ɻ ͜ΕΒ͍ͬͨͳ͍ɻࣦഊ͕͋ͬͯΑ͍͠ɺيಓʹΔ·Ͱʹ͕͔͔࣌ؒͬͯ·͋ྑ͍ͷͰ ɻࣗʹ߹Θͳ͔ͬͨΓɺͭ·Βͳ͍ͱײ͡ΔͳΒΊͯ͠·͑Α͍͠ɺͦΕΒΛ࢝Ίͳ͍ཧ ༝ʹͯ͠͠·͏ͷ͍ͬͨͳ͍ɻͬͯΈͨ࣌ʹ͚ͩɺͦͷઌ͕ݟ͑ΔՄೳੑ͕͋Δͷ͔ͩΒɻ ϋʔυϧΛΊ͍ͬͺ͍Լ͛ͯɺͬ͞ͱ࣮ߦͯ͠ɺͦͷ࣌͏Ұɺͪΐͬͱਖ਼֬ʹͳͬͨঢ়ଶͷ அΛ͢Ε͍͍Μ͡Όͳ͍͔ͳɻ
͕͢ҙຯ͕͋Γͦ͏ͳ͜ͱ ࣗɺࣗͷίʔυͰͳ͍(ଞਓͷ;ΜͲ͠Ͱ) ൃද͢Δ͜ͱΛ(ͦΕ͔͠ग़དྷͳ͍͜ͱ Λ)Ͳ͏ʹ͔͍ͨ͠ͱͣͬͱࢥ͍ͬͯͨɻ ͦ͏Ͱͳ͍ͱɺൃද͢ΔՁ͕ͳ͍ͷͰͳ͍͔ͱɺؾʹ͍ͯͨ࣌͠ظ͕͋ͬͨɻ (ଞͷਓ͕ൃද͢Δ࣌ɺͦ͏͍͏ͷશવؾʹ͍ͯ͠ͳ͔͚ͬͨΕͲ) ͦ͏Ͱͳ͍ɻͱ͍͏͜ͱʹͬͱࣗΛ࣋ͭ͜ͱ͕ग़དྷ͖ͯͨɻͨͱ͑ɺ Ruby Grant 2017
ͷ k0kubun ͞Μͷ࠷ऴใࠂॻͰɺͷ ԭೄRubyձٞ02 Ͱͷࢿྉ͕ࢀর͞ Ε͍ͯΔɻ( https://www.ruby.or.jp/assets/images/ja/news/20180501.data/kokubun.pdf ) ͠ Charty ͩͬͨΓɺࣗͷॻ͍ͨػೳΛࢼͯ͘͠ΕͯɺͦΕʹ͍ͭͯॻ͖ͯ͘͠Εͨ ΓɺͲ͔͜Ͱൃදͯ͘͠ΕͨΓ͍ͯͨ͠Β͏Ε͍͠ɻ ͔ͩΒ͋Εྑ͔ͬͨΜͩɻͱࢥ͑ΔΑ͏ʹͳͬͨɻ
Future Plans - Data Abstraction Layer - Support NMatrix(࣮ͨ͠) -
Support Red::Arrow - Support benchmark_driver (ϕϯνϚʔΫ݁ՌͷՄࢹԽ)(ॳظ࣮Ͱ͖ͨͷͰɺվળ͢Δ) - Plotting Abstraction Layer - ग़ྗՄೳͳάϥϑͷՃ - Support rubydown (https://github.com/sciruby-jp/rubydown) ࠓޙɺͬͱָʹ͑Δঢ়ଶʹ͍ͨ͠ɻ(·ͩͪΐͬͱ͕ΜΒͳ͍ͱ͑ͳ͍ͱ͍͏ೝࣝͳͷͰ)
·͕ͩ࣌ؒ͋Ε ίʔυͷཁॴΛ ղઆ͠·͢ʂ
Thanks a lot for having me Railsdm ʹฏ͞Μ͕ؔΘΔͷ͕࠷ޙͱฉ͍͍ͯ·͢ɻ Railsdm
ʹ৭ʑͳؔΘΓํΛ͖ͯ͠·͕ͨ͠ɺ Railsdm Λ ௨ͯͨ͡͠ϥϯΩϯάͰ͚ͬ͜͏্Ґʹ͘Δͱࢥ͏ͷͰ͢Ͷɻ 2017, 2018, 2019 ͱ͍͏ظؒΛΑΓָ͘͠ա͢͜͝ͱ͕Ͱ͖·͠ ͨɻ ͦΕฏ͞Μ͕ Railsdm Λଓ͚ͯ͘Ε͔ͨΒͰ͢ɻ ͋Γ͕ͱ͏͍͟͝·͢ɻ