$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangChainとSupabaseを活用して、RAGを実装してみた
Search
Atsushi Miyamoto
December 05, 2024
Technology
1
820
LangChainとSupabaseを活用して、RAGを実装してみた
Supabase LW13 Tokyo MeetupのLT資料です!
Atsushi Miyamoto
December 05, 2024
Tweet
Share
More Decks by Atsushi Miyamoto
See All by Atsushi Miyamoto
Agentic RAG with LangGraph
atsushii
1
500
Asynqを使って、サクッと非同期処理を実現する
atsushii
0
390
Checkpointerを介して、DynamoDBに状態を保存してみた
atsushii
1
300
OOM発生時のトラブルシューティング Profilerを活用できるか調査してみた
atsushii
1
620
Other Decks in Technology
See All in Technology
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
17
15k
【ASW21-02】STAMP/CAST分析における生成AIの支援 ~羽田空港航空機衝突事故を題材として (Support of Generative AI in STAMP/CAST Analysis - A Case Study Based on the Haneda Airport Aircraft Accident -)
hianraku9498
1
270
Bedrock のコスト監視設計
fohte
2
250
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
『ソフトウェア』で『リアル』を動かす:クレーンゲームからデータ基盤までの統一アーキテクチャ / アーキテクチャConference 2025
genda
0
1.8k
ブラウザ拡張のセキュリティの話 / Browser Extension Security
flatt_security
0
210
スタートアップの事業成長を支えるアーキテクチャとエンジニアリング
doragt
1
9.2k
.NET 10のEntity Framework Coreの新機能
htkym
0
130
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
230
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
130
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
6
10k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
Featured
See All Featured
Music & Morning Musume
bryan
46
7k
How GitHub (no longer) Works
holman
315
140k
Rails Girls Zürich Keynote
gr2m
95
14k
YesSQL, Process and Tooling at Scale
rocio
174
15k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Speed Design
sergeychernyshev
33
1.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Agile that works and the tools we love
rasmusluckow
331
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
BBQ
matthewcrist
89
9.9k
4 Signs Your Business is Dying
shpigford
186
22k
Transcript
© 2024 Loglass Inc. 0 © 2024 Loglass Inc. LangChainと
Supabaseを活用して、 RAGを実装してみた 宮本 淳志 2024.11.20
© 2024 Loglass Inc. 1 自己紹介 自動車整備士としてキャリアをスタートし、退職後カナダのバンクーバーへ渡航。その後、プログラ ミングを現地の学校で勉強した後に、機械学習エンジニアとして現地のスタートアップでエンジニア としてのキャリアをスタートさせる。 2年半カナダに滞在したのち、福岡へ移住。
福岡の受託開発会社でバックエンドエンジニアとして3年ほど勤務。バックエンド・フロント・インフ ラの経験を積む。 2024年10月に株式会社ログラスへクラウドエンジニアとして入社。 生成AI入門中 株式会社ログラス クラウドエンジニア 宮本 淳志 Atsushi Miyamoto
© 2024 Loglass Inc. 2
© 2024 Loglass Inc. 3 Loglassについて
© 2024 Loglass Inc. 4 Loglassについて
© 2024 Loglass Inc. 5 今日話すこと 0. 背景 1. RAGとは
2. Supabase Vector DBについて 3. GCP Vertex AI Agent BuilderからSupabaseに乗り換えた話 4. Supabase x LangChainを使ってRAGの実装 5. まとめ Agenda
© 2024 Loglass Inc. 6 個人開発でAI Chatbotを開発していて、その過程でLangChainとSupabaseを使って、RAG(Retrieval Augmented Generation)を実装したので、その経験を共有したいと思います。 また開発の過程で、
GCP Vertex AI Agent BuilderからSupabaseへ乗り換えたので、その辺りもお話しできればと 思います。 実際に実務で活用してる、みたいなお話はできないのでご了承ください..! 00|背景 背景
© 2024 Loglass Inc. 7 01 RAGとは
© 2024 Loglass Inc. 8 01|RAGとは RAG(Retrieval Augmented Generation)の概要 大規模言語モデル(LLM)の出力を最適化するプロセス
LLMの応答生成前に外部の信頼できる知識ベースを参照して、回答の質を向上させることが可能 利点: • 最新の情報へのアクセス ◦ OpenAIのgpt-4o-2024-11-20のモデルの場合2023/10月カットオフ • 信頼性の強化 ◦ 出力へ参照元の資料のURLなども含めることが可能 • ハルシネーションの低減 ◦ 外部知識に基づいて回答を生成させるため、LLMが誤った回答をするリスクを軽減 ※参考: https://aws.amazon.com/what-is/retrieval-augmented-generation/
© 2024 Loglass Inc. 9 01|RAGとは RAGの基本構成 ※参考: https://aws.amazon.com/jp/blogs/news/a-practical-guide-to-im prove-rag-systems-with-advanced-rag-on-aws/
1. 外部データ(ドキュメント)をベクトル化して、ベクトル データベースへ保存 2. ユーザが何かしらの質問を投げる 3. 埋め込みモデルが質問をベクトル化 4. データベースから質問に類似したチャンクを検索 5. LLMへの入力コンテキスト構築 6. LLMが回答生成 → 今回はベクトルデータベースとして、Supabaseを使用
© 2024 Loglass Inc. 10 02 Supabase Vector DBについて
© 2024 Loglass Inc. 11 情報をデータオブジェクトの数値表現であるベクトルにして保存するデータ ベース 画像、テキストや音声などの非構造データをベクトル化して保存が可能 ベクトル化することで、非構造データに対して検索をかけることができる 02|Supabase
Vector DBについて Vector DBとは? • Semantic Search ◦ 正確なキーワードではなく、ユーザーのクエリの背後にある意味を解釈して 検索する方法 • Keyword Search ◦ 主に検索語とデータ内のテキストとの完全一致に基づいて、特定の単語やフ レーズを含む文書やレコードを検索方法 • Hybrid Search ◦ Semantic SearchとKeyword Searchの長所を組み合わせた検索方法 例: ベクトル化されたテキスト 参考: https://supabase.com/docs/guides/ai
© 2024 Loglass Inc. 12 PostgreSQL拡張(pgvector)を利用してベクトルDBとして の機能を追加している 使用したい場合は、ダッシュボードもしくはSQLで有効化するだ けでOK 様々なサードパーティツールと統合可能
• LangChain • Hugging Face etc… (初期費用もかからず無料で試せます 02|Supabase Vector DBについて SupabaseでのVector DBの活用 拡張機能を有効化 参考: https://supabase.com/docs/guides/ai
© 2024 Loglass Inc. 13 03 GCP Vertex AI Agent
Builderから Supabaseに乗り換えた話
© 2024 Loglass Inc. 14 • 検証のために、コストが安いかつ迅速にRAGの仕組みを実 装したかった ◦ Cloud
Storageをデータソースとして指定可能 ◦ ノーコードで構築可能 03|GCP Vertex AI Agent BuilderからSupabaseに乗り換えた話 そもそもなぜVertexAIを使用 していたか
© 2024 Loglass Inc. 15 Supabaseに乗り換えた理由 • テナントごとにデータの管理をしたかった ◦ Vertex
AI Searchアプリ構築時に一つのデータ ストアしか紐付けできなかった ◦ 別テナントのデータもまとめて管理すると、異なる テナントのデータに対してもアクセスできてしまう ので、情報が取得できてしまう懸念があった 03|GCP Vertex AI Agent BuilderからSupabaseに乗り換えた話
© 2024 Loglass Inc. 16 04 Supabase x LangChain を使ってRAGの実装
© 2024 Loglass Inc. 17 • OpenAIのembeddingのモデルを指定 ◦ ベクトル化に使用 •
Supabaseをベクトルデータベースとして指定 • Supabaseで事前に作成してある、テーブルと functionを指定 04|Supabase x LangChainを使ってのRAGの実装 VectorStore作成 参考: https://js.langchain.com/docs/integrations/vectorstores/supabase/ #instantiation
© 2024 Loglass Inc. 18 04|Supabase x LangChainを使ってのRAGの実装 データの保存 •
受け取ったURLからhtmlを取得 • 前処理 ◦ textに変換 ◦ 不要な文字列を置き換え • チャンク • テナント固有のidを含めたmetadata作成 ◦ Document型で扱う • Vectorに保存 ◦ 内部的にベクトル化されたコンテンツが 保存される 参考: https://js.langchain.com/docs/integrations/vectorstores/supabase/#instantiation
© 2024 Loglass Inc. 19 04|Supabase x LangChainを使ってのRAGの実装 Document型
© 2024 Loglass Inc. 20 04|Supabase x LangChainを使ってのRAGの実装 保存内容 •
id • content ◦ 元々のテキスト • metadata ◦ domainId(テナント固有) • embedding (vector) ◦ contentがベクトル化されたもの
© 2024 Loglass Inc. 21 04|Supabase x LangChainを使ってのRAGの実装 検索 •
受け取ったクエリ(質問)でベクトルデータベースに対して、検索をかける ◦ metadataとして保存したdomainIdでフィルタリングすることで、該当のテナントデータにのみアクセスさせる
© 2024 Loglass Inc. 22 05 まとめと今後の展望
© 2024 Loglass Inc. 23 05|まとめと今後の展望 まとめと今後の展望 • SupabaseとLangChainを組み合わせることで、サクッとRAGの実装ができる •
IDで強引にフィルタリングしていたが、ちゃんとRLS使っていきたい ◦ NEONをメインDBとして使っているので、現状使えてない ▪ https://neon.tech/ • 来年こそ個人開発で収益出す
© 2024 Loglass Inc. 24