Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com Abstract Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learn- ing residual functions with reference to the layer inputs, in- stead of learning unreferenced functions. We provide com- prehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8⇥ deeper than VGG nets [41] but still having lower complex- ity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our ex- tremely deep representations, we obtain a 28% relative im- provement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet local- ization, COCO detection, and COCO segmentation. 1. Introduction Deep convolutional neural networks [22, 21] have led to a series of breakthroughs for image classification [21, 50, 40]. Deep networks naturally integrate low/mid/high- level features [50] and classifiers in an end-to-end multi- layer fashion, and the “levels” of features can be enriched by the number of stacked layers (depth). Recent evidence [41, 44] reveals that network depth is of crucial importance, and the leading results [41, 44, 13, 16] on the challenging ImageNet dataset [36] all exploit “very deep” [41] models, with a depth of sixteen [41] to thirty [16]. Many other non- trivial visual recognition tasks [8, 12, 7, 32, 27] have also 1http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015. 0 1 2 3 4 5 6 0 10 20 iter. (1e4) training error (%) 0 1 2 3 4 5 6 0 10 20 iter. (1e4) test error (%) 56-layer 20-layer 56-layer 20-layer Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer “plain” networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4. greatly benefited from very deep models. Driven by the significance of depth, a question arises: Is learning better networks as easy as stacking more layers? An obstacle to answering this question was the notorious problem of vanishing/exploding gradients [1, 9], which hamper convergence from the beginning. This problem, however, has been largely addressed by normalized initial- ization [23, 9, 37, 13] and intermediate normalization layers [16], which enable networks with tens of layers to start con- verging for stochastic gradient descent (SGD) with back- propagation [22]. When deeper networks are able to start converging, a degradation problem has been exposed: with the network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher train- ing error, as reported in [11, 42] and thoroughly verified by our experiments. Fig. 1 shows a typical example. The degradation (of training accuracy) indicates that not all systems are similarly easy to optimize. Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model. The existence of this constructed solution indicates that a deeper model should produce no higher training error than its shallower counterpart. But experiments show that our current solvers on hand are unable to find solutions that 1 arXiv:1512.03385v1 [cs.CV] 10 Dec 2015 Densely Connected Convolutional Networks Gao Huang⇤ Cornell University
[email protected] Zhuang Liu⇤ Tsinghua University
[email protected] Laurens van der Maaten Facebook AI Research
[email protected] Kilian Q. Weinberger Cornell University
[email protected] Abstract Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convo- lutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1) 2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several com- pelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage fea- ture reuse, and substantially reduce the number of parame- ters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig- nificant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high per- formance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet . 1. Introduction Convolutional neural networks (CNNs) have become the dominant machine learning approach for visual object recognition. Although they were originally introduced over 20 years ago [18], improvements in computer hardware and network structure have enabled the training of truly deep CNNs only recently. The original LeNet5 [19] consisted of 5 layers, VGG featured 19 [29], and only last year Highway ⇤Authors contributed equally x0 x1 H1 x2 H2 H3 H4 x3 x4 Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input. Networks [34] and Residual Networks (ResNets) [11] have surpassed the 100-layer barrier. As CNNs become increasingly deep, a new research problem emerges: as information about the input or gra- dient passes through many layers, it can vanish and “wash out” by the time it reaches the end (or beginning) of the network. Many recent publications address this or related problems. ResNets [11] and Highway Networks [34] by- pass signal from one layer to the next via identity connec- tions. Stochastic depth [13] shortens ResNets by randomly dropping layers during training to allow better information and gradient flow. FractalNets [17] repeatedly combine sev- eral parallel layer sequences with different number of con- volutional blocks to obtain a large nominal depth, while maintaining many short paths in the network. Although these different approaches vary in network topology and training procedure, they all share a key characteristic: they create short paths from early layers to later layers. 1 arXiv:1608.06993v5 [cs.CV] 28 Jan 2018 Inception Recurrent Convolutional Neural Network for Object Recognition Md Zahangir Alom
[email protected] University of Dayton, Dayton, OH, USA Mahmudul Hasan
[email protected] Comcast Labs, Washington, DC, USA Chris Yakopcic
[email protected] University of Dayton, Dayton, OH, USA Tarek M. Taha
[email protected] University of Dayton, Dayton, OH, USA Abstract Deep convolutional neural networks (DCNNs) are an influential tool for solving various prob- lems in the machine learning and computer vi- sion fields. In this paper, we introduce a new deep learning model called an Inception- Recurrent Convolutional Neural Network (IR- CNN), which utilizes the power of an incep- tion network combined with recurrent layers in DCNN architecture. We have empirically eval- uated the recognition performance of the pro- posed IRCNN model using different benchmark datasets such as MNIST, CIFAR-10, CIFAR- 100, and SVHN. Experimental results show sim- ilar or higher recognition accuracy when com- pared to most of the popular DCNNs including the RCNN. Furthermore, we have investigated IRCNN performance against equivalent Incep- tion Networks and Inception-Residual Networks using the CIFAR-100 dataset. We report about 3.5%, 3.47% and 2.54% improvement in classifi- cation accuracy when compared to the RCNN, equivalent Inception Networks, and Inception- Residual Networks on the augmented CIFAR- 100 dataset respectively. 1. Introduction In recent years, deep learning using Convolutional Neu- ral Networks (CNNs) has shown enormous success in the field of machine learning and computer vision. CNNs pro- vide state-of-the-art accuracy in various image recognition tasks including object recognition (Schmidhuber, 2015; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy et al., 2015), object detection (Girshick et al., 2014), tracking (Wang et al., 2015), and image caption- ing (Xu et al., 2014). In addition, this technique has been applied massively in computer vision tasks such as video representation and classification of human activity (Bal- las et al., 2015). Machine translation and natural language processing are applied deep learning techniques that show great success in this domain (Collobert & Weston, 2008; Manning et al., 2014). Furthermore, this technique has been used extensively in the field of speech recognition (Hinton et al., 2012). Moreover, deep learning is not lim- ited to signal, natural language, image, and video process- ing tasks, it has been applying successfully for game devel- opment (Mnih et al., 2013; Lillicrap et al., 2015). There is a lot of ongoing research for developing even better perfor- mance and improving the training process of DCNNs (Lin et al., 2013; Springenberg et al., 2014; Goodfellow et al., 2013; Ioffe & Szegedy, 2015; Zeiler & Fergus, 2013). In some cases, machine intelligence shows better perfor- mance compared to human intelligence including calcula- tion, chess, memory, and pattern matching. On the other hand, human intelligence still provides better performance in other fields such as object recognition, scene under- standing, and more. Deep learning techniques (DCNNs in particular) perform very well in the domains of detec- tion, classification, and scene understanding. There is a still a gap that must be closed before human level intelli- gence is reached when performing visual recognition tasks. Machine intelligence may open an opportunity to build a system that can process visual information the way that a human brain does. According to the study on the visual processing system within a human brain by James DiCarlo et al. (Zoccolan & Rust, 2012) the brain consists of sev- eral visual processing units starting with the visual cortex arXiv:1704.07709v1 [cs.CV] 25 Apr 2017 2015-2017 Supervised Im age Classification