Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Visualization Grammar
Search
Eitan Lees
March 03, 2020
Programming
9
760
Visualization Grammar
A brief tour of the Vega/Vega-Lite visualization grammar used in Altair
Eitan Lees
March 03, 2020
Tweet
Share
More Decks by Eitan Lees
See All by Eitan Lees
Visualization
eitanlees
146
16k
Matplotlib
eitanlees
8
880
Altair Tutorial
eitanlees
4
940
Scientific Visualization
eitanlees
6
670
Other Decks in Programming
See All in Programming
Javaに鉄道指向プログラミング (Railway Oriented Pro gramming) のエッセンスを取り入れる/Bringing the Essence of Railway-Oriented Programming to Java
cocet33000
2
580
Kotlin エンジニアへ送る:Swift 案件に参加させられる日に備えて~似てるけど色々違う Swift の仕様 / from Kotlin to Swift
lovee
1
230
Development of an App for Intuitive AI Learning - Blockly Summit 2025
teba_eleven
0
120
GoのGenericsによるslice操作との付き合い方
syumai
2
660
AIネイティブなプロダクトをGolangで挑む取り組み
nmatsumoto4
0
120
レガシーシステムの機能調査・開発におけるAI利活用
takuya_ohtonari
0
600
ドメインモデリングにおける抽象の役割、tagless-finalによるDSL構築、そして型安全な最適化
knih
11
1.9k
Bytecode Manipulation 으로 생산성 높이기
bigstark
2
360
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
760
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
790
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
160
「ElixirでIoT!!」のこれまでとこれから
takasehideki
0
360
Featured
See All Featured
For a Future-Friendly Web
brad_frost
179
9.8k
Bash Introduction
62gerente
614
210k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
It's Worth the Effort
3n
184
28k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Automating Front-end Workflow
addyosmani
1370
200k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Transcript
Data Mark Encoding Transform Scale Guide Visualization Grammar
Data Mark Encoding Transform Scale Guide A B C &
Variables Observations Tabular Data A B C
Data Mark Encoding Transform Scale Guide A,B,C,D,E 4,6,4,4,3 4,4,8,4,3 7,5,5,0,1
5,9,3,0,5 0,1,2,4,2 [ { "A":4, "B":6, "C":4, "D":4, "E":3 }, { "A":4, "B":4, "C":8, "D":4, "E":3 }, { "A":7, "B":5, "C":5, "D":0, "E":1 }, { "A":5, "B":9, "C":3, "D":0, "E":5 }, { "A":0, "B":1, "C":2, "D":4, "E":2 } ] https://eitanlees.com/ABC.csv
Data Mark Encoding Transform Scale Guide B A A A
C C C B B and many more ... Text Circle Bar Line
Data Mark Encoding Transform Scale Guide X Position Y Position
Size Color ⠇ Channel A B C D ⠇ Variable
Data Mark Encoding Transform Scale Guide Calculate Fold Filter Aggregate
and many more ...
Data Mark Encoding Transform Scale Guide f(domain) → range
Data Mark Encoding Transform Scale Guide A B C Legend
Data Mark Encoding Transform Scale Guide Let’s make a chart
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() sepalLength sepalWidth PetalLength PetalWidth species 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 setosa 4.6 3.1 1.5 0.2 setosa ⠇
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle()
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle() Without an encoding our chart is not very interesting
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth') )
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide Note that the guides and scales are automatically generated for us
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ).transform_filter( alt.datum.sepalWidth < 3 ) Scale Guide