Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for iOS)
Search
Elvis Lin
July 19, 2018
Programming
0
160
ML Kit Introduction (for iOS)
Introduce the basic concept of ML Kit and how to use it in iOS development
Elvis Lin
July 19, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
53
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
53
Strategies of Facebook LightSpeed project
elvismetaphor
0
90
Background Execution And WorkManager
elvismetaphor
2
490
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
520
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
300
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
50
Other Decks in Programming
See All in Programming
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
140
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
110
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
140
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
180
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
2.9k
Integrating WordPress and Symfony
alexandresalome
0
120
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
120
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
230
connect-python: convenient protobuf RPC for Python
anuraaga
0
350
Level up your Gemini CLI - D&D Style!
palladius
1
170
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
17
6.6k
CSC305 Lecture 17
javiergs
PRO
0
270
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Raft: Consensus for Rubyists
vanstee
140
7.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Designing for Performance
lara
610
69k
RailsConf 2023
tenderlove
30
1.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
We Have a Design System, Now What?
morganepeng
54
7.9k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Docker and Python
trallard
46
3.7k
Context Engineering - Making Every Token Count
addyosmani
9
460
Building Applications with DynamoDB
mza
96
6.8k
Statistics for Hackers
jakevdp
799
230k
Transcript
ML Kit 使⽤用簡介 (iOS) Elvis Lin @Cocoahead Taipei 2018-07-19
關於我 • Elvis Lin • iOS 與 Android 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參 與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
Tensorflow Lite https://youtu.be/ByJnpbDd-zc
https://www.tensorflow.org/mobile/tflite/
轉換 Tensorflow 檔案的⼯工具 • Tensorflow converter • 轉成 Tensorflow Lite
格式 • Tensorflow-CoreML converter • 轉成 CoreML 格式 • https://github.com/tf-coreml/tf-coreml
ML Kit https://youtu.be/Z-dqGRSsaBs
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
託管客製化的模型 ⽬目前只⽀支援 Tensorflow Lite 格式
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 iOS app 然後下載設定檔 設定好 Bundle ID 下載 GoogleService-info.plist
新增 plist 檔案到專案 • 將 GoogleService-Info.plist 放到 <root>/<application_folder>/ 下
安裝 Firebase 函式庫 • 修改 Podfile,新增以下的內容 • cd <root> pod
install • 打改 <project_name>.xcworkspace pod 'Firebase/Core' pod 'Firebase/MLVision' pod 'Firebase/MLVisionTextModel' pod 'Firebase/MLVisionFaceModel' pod 'Firebase/MLVisionBarcodeModel' pod 'Firebase/MLVision' pod 'Firebase/MLVisionLabelModel'
掃描 Barcode (Local) let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options)
let visionImage = VisionImage(image: pickedImage) barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error == nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
第1步:初始化 Detector let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options) let
visionImage = VisionImage(image: pickedImage)
第2步:取得結果 barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error ==
nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
⽀支援的 Barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (Local) lazy var textDetector: VisionTextDetector = Vision.vision().textDetector() func
runTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) textDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processResult(from: features, error: error) } }
辨識⽂文字 (Cloud) Lazy var cloudTextDetector: VisionCloudTextDetector = Vision.vision().cloudTextDetector() func
runCloudTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) cloudTextDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processCloudResult(from: features, error: error) } }
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit-ios/ • https://github.com/firebase/quickstart-ios/tree/master/ mlvision • https://www.appcoda.com.tw/ml-kit/
None