Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for iOS)
Search
Elvis Lin
July 19, 2018
Programming
0
160
ML Kit Introduction (for iOS)
Introduce the basic concept of ML Kit and how to use it in iOS development
Elvis Lin
July 19, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
51
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
51
Strategies of Facebook LightSpeed project
elvismetaphor
0
83
Background Execution And WorkManager
elvismetaphor
2
480
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
510
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
290
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
47
Other Decks in Programming
See All in Programming
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
320
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
570
機能追加とリーダー業務の類似性
rinchoku
2
1.3k
Kiroで始めるAI-DLC
kaonash
2
630
チームのテスト力を鍛える
goyoki
3
930
Compose Multiplatform × AI で作る、次世代アプリ開発支援ツールの設計と実装
thagikura
0
170
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
2.8k
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
230
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
120
MCPとデザインシステムに立脚したデザインと実装の融合
yukukotani
4
1.5k
実用的なGOCACHEPROG実装をするために / golang.tokyo #40
mazrean
1
300
より安全で効率的な Go コードへ: Protocol Buffers Opaque API の導入
shwatanap
2
790
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
Building Adaptive Systems
keathley
43
2.7k
How GitHub (no longer) Works
holman
315
140k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Balancing Empowerment & Direction
lara
3
630
Agile that works and the tools we love
rasmusluckow
330
21k
Scaling GitHub
holman
463
140k
Become a Pro
speakerdeck
PRO
29
5.5k
Visualization
eitanlees
148
16k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
ML Kit 使⽤用簡介 (iOS) Elvis Lin @Cocoahead Taipei 2018-07-19
關於我 • Elvis Lin • iOS 與 Android 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參 與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
Tensorflow Lite https://youtu.be/ByJnpbDd-zc
https://www.tensorflow.org/mobile/tflite/
轉換 Tensorflow 檔案的⼯工具 • Tensorflow converter • 轉成 Tensorflow Lite
格式 • Tensorflow-CoreML converter • 轉成 CoreML 格式 • https://github.com/tf-coreml/tf-coreml
ML Kit https://youtu.be/Z-dqGRSsaBs
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
託管客製化的模型 ⽬目前只⽀支援 Tensorflow Lite 格式
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 iOS app 然後下載設定檔 設定好 Bundle ID 下載 GoogleService-info.plist
新增 plist 檔案到專案 • 將 GoogleService-Info.plist 放到 <root>/<application_folder>/ 下
安裝 Firebase 函式庫 • 修改 Podfile,新增以下的內容 • cd <root> pod
install • 打改 <project_name>.xcworkspace pod 'Firebase/Core' pod 'Firebase/MLVision' pod 'Firebase/MLVisionTextModel' pod 'Firebase/MLVisionFaceModel' pod 'Firebase/MLVisionBarcodeModel' pod 'Firebase/MLVision' pod 'Firebase/MLVisionLabelModel'
掃描 Barcode (Local) let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options)
let visionImage = VisionImage(image: pickedImage) barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error == nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
第1步:初始化 Detector let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options) let
visionImage = VisionImage(image: pickedImage)
第2步:取得結果 barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error ==
nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
⽀支援的 Barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (Local) lazy var textDetector: VisionTextDetector = Vision.vision().textDetector() func
runTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) textDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processResult(from: features, error: error) } }
辨識⽂文字 (Cloud) Lazy var cloudTextDetector: VisionCloudTextDetector = Vision.vision().cloudTextDetector() func
runCloudTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) cloudTextDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processCloudResult(from: features, error: error) } }
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit-ios/ • https://github.com/firebase/quickstart-ios/tree/master/ mlvision • https://www.appcoda.com.tw/ml-kit/
None