Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Working with tidymodels

Working with tidymodels

Slide for "Working with tidymodels" at Orange County R Users Group (OCRUG) January 2019

Emil Hvitfeldt

January 29, 2019
Tweet

More Decks by Emil Hvitfeldt

Other Decks in Programming

Transcript

  1. library(tidymodels) ## ✔ broom 0.5.1 ✔ purrr 0.3.0 ## ✔

    dials 0.0.2 ✔ recipes 0.1.4 ## ✔ dplyr 0.7.8 ✔ rsample 0.0.4 ## ✔ ggplot2 3.1.0 ✔ tibble 2.0.1 ## ✔ infer 0.4.0 ✔ yardstick 0.0.2 ## ✔ parsnip 0.0.1.9000 tidymodels is a "meta-package" for modeling and statistical analysis that share the underlying design philosophy, grammar, and data structures of the tidyverse. 2 / 39
  2. - broom - dials - dplyr - ggplot2 - infer

    - parsnip - purrr - recipes - rsample - tibble - yardstick The packages 3 / 39
  3. - broom - dials - dplyr - ggplot2 - infer

    - parsnip - purrr - recipes - rsample - tibble - yardstick The packages (tidyverse) 4 / 39
  4. - broom - dials - dplyr - ggplot2 - infer

    - parsnip - purrr - recipes - rsample - tibble - yardstick The packages (tidyverse) 5 / 39
  5. - broom - dials - dplyr - ggplot2 - infer

    - parsnip - purrr - recipes - rsample - tibble - yardstick The packages 6 / 39
  6. ⚠ ⚠ Disclaimer ⚠ ⚠ This talk is not designed

    to give opinions with respect to modeling best practices. This talk is designed to showcase what packages are available and what they can do. 7 / 39
  7. Consider 32 cars from 1973-74 head(mtcars) ## mpg cyl disp

    hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 8 / 39
  8. model_glm <- glm(am ~ disp + drat + qsec, data

    = mtcars, family = "binomial") 9 / 39
  9. model_glm <- glm(am ~ disp + drat + qsec, data

    = mtcars, family = "binomial") predict(model_glm) ## Mazda RX4 Mazda RX4 Wag Datsun 710 ## 105.97448 69.85214 27.10173 ## Hornet 4 Drive Hornet Sportabout Valiant ## -276.59440 -240.20025 -313.42683 ## Duster 360 Merc 240D Merc 230 ## -158.99087 -123.81721 -284.08255 ## Merc 280 Merc 280C Merc 450SE ## -20.37716 -59.07966 -167.78204 ## Merc 450SL Merc 450SLC Cadillac Fleetwood ## -180.68287 -206.48454 -458.77204 ## Lincoln Continental Chrysler Imperial Fiat 128 ## -427.72554 -357.75792 27.25037 ## Honda Civic Toyota Corolla Toyota Corona ## 164.39652 20.76278 -90.84576 ## Dodge Challenger AMC Javelin Camaro Z28 ## -211.90064 -189.27739 -74.78345 ## Pontiac Firebird Fiat X1-9 Porsche 914-2 ## -297.35324 63.64819 184.39936 ## Lotus Europa Ford Pantera L Ferrari Dino ## 146.50220 24.28831 162.60217 ## Maserati Bora Volvo 142E ## 21.69348 33.80864 9 / 39
  10. library(glmnet) model_glmnet <- glmnet(am ~ disp + drat + qsec,

    data = mtcars, family = "binomial") 10 / 39
  11. library(glmnet) model_glmnet <- glmnet(am ~ disp + drat + qsec,

    data = mtcars, family = "binomial") ## Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data 10 / 39
  12. library(glmnet) model_glmnet <- glmnet(am ~ disp + drat + qsec,

    data = mtcars, family = "binomial") ## Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data model_glmnet <- glmnet(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = mtcars[, "am"], family = "binomial") 10 / 39
  13. library(glmnet) model_glmnet <- glmnet(am ~ disp + drat + qsec,

    data = mtcars, family = "binomial") ## Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data model_glmnet <- glmnet(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = mtcars[, "am"], family = "binomial") model_glm <- glm(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = mtcars[, "am"], family = "binomial") 10 / 39
  14. library(glmnet) model_glmnet <- glmnet(am ~ disp + drat + qsec,

    data = mtcars, family = "binomial") ## Error in glmnet(am ~ disp + drat + qsec, data = mtcars, family = "binomial"): unused argument (data model_glmnet <- glmnet(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = mtcars[, "am"], family = "binomial") model_glm <- glm(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = mtcars[, "am"], family = "binomial") ## Error in environment(formula): argument "formula" is missing, with no default 10 / 39
  15. User-facing problems in modeling in R - Data must be

    a matrix (except when it needs to be a data.frame) - Must use formula or x/y (or both) - Inconsistent naming of arguments (ntree in randomForest, num.trees in ranger) - na.omit explicitly or silently - May or may not accept factors 11 / 39
  16. User-facing problems in modeling in R - Data must be

    a matrix (except when it needs to be a data.frame) - Must use formula or x/y (or both) - Inconsistent naming of arguments (ntree in randomForest, num.trees in ranger) - na.omit explicitly or silently - May or may not accept factors 11 / 39
  17. Syntax for Computing Predicted Class Probabilities Function Package Code lda

    MASS predict(obj) glm stats predict(obj, type = "response") gbm gbm predict(obj, type = "response", n.trees) mda mda predict(obj, type = "posterior") rpart rpart predict(obj, type = "prob") Weka RWeka predict(obj, type = "probability") logitboost LogitBoost predict(obj, type = "raw", nIter) blatantly stolen from Max Kuhn 12 / 39
  18. The goals of parsnip is... - Decouple the model classi

    cation from the computational engine - Separate the de nition of a model from its evaluation - Harmonize argument names - Make consistent predictions (always tibbles with na.omit=FALSE) 14 / 39
  19. model_glm <- glm(am ~ disp + drat + qsec, data

    = mtcars, family = "binomial") 15 / 39
  20. library(parsnip) model_glm <- logistic_reg(mode = "classification") %>% set_engine("glm") model_glm ##

    Logistic Regression Model Specification (classification) ## ## Computational engine: glm 16 / 39
  21. library(parsnip) model_glm <- logistic_reg(mode = "classification") %>% set_engine("glm") model_glm ##

    Logistic Regression Model Specification (classification) ## ## Computational engine: glm fit_glm <- model_glm %>% fit(factor(am) ~ disp + drat + qsec, data = mtcars) 16 / 39
  22. library(parsnip) model_glmnet <- logistic_reg(mode = "classification") %>% set_engine("glmnet") model_glmnet ##

    Logistic Regression Model Specification (classification) ## ## Computational engine: glmnet fit_glmnet <- model_glmnet %>% fit(factor(am) ~ disp + drat + qsec, data = mtcars) 17 / 39
  23. Using both formula and x/y Formula fit_glm <- model_glm %>%

    fit(factor(am) ~ ., data = mtcars) x/y fit_glm <- model_glm %>% fit_xy(x = as.matrix(mtcars[, c("disp", "drat", "qsec")]), y = factor(mtcars[, "am"]), data = mtcars) 18 / 39
  24. Tidy prediction predict(fit_glm, mtcars) ## # A tibble: 32 x

    1 ## .pred_class ## <fct> ## 1 1 ## 2 1 ## 3 1 ## 4 0 ## 5 0 ## 6 0 ## 7 0 ## 8 0 ## 9 0 ## 10 0 ## # … with 22 more rows 19 / 39
  25. Consider now that we wanted to model a more advanded

    relation ship between variables fit_glm <- model_glm %>% fit(factor(am) ~ poly(mpg, 3) + pca(disp:wt)[1] + pca(disp:wt)[2] + pca(disp:wt)[3], data = mtcars) 20 / 39
  26. Consider now that we wanted to model a more advanded

    relation ship between variables fit_glm <- model_glm %>% fit(factor(am) ~ poly(mpg, 3) + pca(disp:wt)[1] + pca(disp:wt)[2] + pca(disp:wt)[3], data = mtcars) - Not all inline functions can be used with formulas - Having to run some calculations many many times - Connected to the model, calculations are not saved between models Post by Max Kuhn about the bad sides of formula https://rviews.rstudio.com/2017/03/01/the-r-formula-method-the-bad-parts/ 20 / 39
  27. Preprocessing steps Some of things you may need to deal

    with before you can start modeling - Same unit (center and scale) - Remove correlation ( lter and PCA extraction) - Missing data (imputation) - Dummy varibles - Zero Variance 22 / 39
  28. Same units library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>%

    step_center(all_predictors()) %>% step_scale(all_predictors()) PCA library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_pca(all_predictors(), threshold = 0.8) Any combination of steps car_rec <- recipe(mpg ~ ., mtcars) %>% step_knnimpute(drat, wt, neighbors = 5) %>% step_zv(all_predictors()) %>% step_pca(all_predictors(), threshold = 0.8) 23 / 39
  29. library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_center(all_predictors()) %>%

    step_scale(all_predictors()) car_rec ## Data Recipe ## ## Inputs: ## ## role #variables ## outcome 1 ## predictor 10 ## ## Operations: ## ## Centering for all_predictors() ## Scaling for all_predictors() 24 / 39
  30. library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_center(all_predictors()) %>%

    step_scale(all_predictors()) car_preped <- prep(car_rec, training = mtcars) 25 / 39
  31. library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_center(all_predictors()) %>%

    step_scale(all_predictors()) car_preped <- prep(car_rec, training = mtcars) bake(car_preped, new_data = mtcars) 25 / 39
  32. library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_center(all_predictors()) %>%

    step_scale(all_predictors()) car_preped <- prep(car_rec, training = mtcars) bake(car_preped, new_data = mtcars) ## # A tibble: 32 x 11 ## mpg cyl disp hp drat wt qsec vs am gear ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 21 -0.105 -0.571 -0.535 0.568 -0.610 -0.777 -0.868 1.19 0.424 ## 2 21 -0.105 -0.571 -0.535 0.568 -0.350 -0.464 -0.868 1.19 0.424 ## 3 22.8 -1.22 -0.990 -0.783 0.474 -0.917 0.426 1.12 1.19 0.424 ## 4 21.4 -0.105 0.220 -0.535 -0.966 -0.00230 0.890 1.12 -0.814 -0.932 ## 5 18.7 1.01 1.04 0.413 -0.835 0.228 -0.464 -0.868 -0.814 -0.932 ## 6 18.1 -0.105 -0.0462 -0.608 -1.56 0.248 1.33 1.12 -0.814 -0.932 ## 7 14.3 1.01 1.04 1.43 -0.723 0.361 -1.12 -0.868 -0.814 -0.932 ## 8 24.4 -1.22 -0.678 -1.24 0.175 -0.0278 1.20 1.12 -0.814 0.424 ## 9 22.8 -1.22 -0.726 -0.754 0.605 -0.0687 2.83 1.12 -0.814 0.424 ## 10 19.2 -0.105 -0.509 -0.345 0.605 0.228 0.253 1.12 -0.814 0.424 ## # … with 22 more rows, and 1 more variable: carb <dbl> 25 / 39
  33. library(recipes) car_rec <- recipe(mpg ~ ., mtcars) %>% step_center(all_predictors()) %>%

    step_scale(all_predictors()) car_preped <- prep(car_rec, training = mtcars) juice(car_preped) ## # A tibble: 32 x 11 ## cyl disp hp drat wt qsec vs am gear carb ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 -0.105 -0.571 -0.535 0.568 -0.610 -0.777 -0.868 1.19 0.424 0.735 ## 2 -0.105 -0.571 -0.535 0.568 -0.350 -0.464 -0.868 1.19 0.424 0.735 ## 3 -1.22 -0.990 -0.783 0.474 -0.917 0.426 1.12 1.19 0.424 -1.12 ## 4 -0.105 0.220 -0.535 -0.966 -0.00230 0.890 1.12 -0.814 -0.932 -1.12 ## 5 1.01 1.04 0.413 -0.835 0.228 -0.464 -0.868 -0.814 -0.932 -0.503 ## 6 -0.105 -0.0462 -0.608 -1.56 0.248 1.33 1.12 -0.814 -0.932 -1.12 ## 7 1.01 1.04 1.43 -0.723 0.361 -1.12 -0.868 -0.814 -0.932 0.735 ## 8 -1.22 -0.678 -1.24 0.175 -0.0278 1.20 1.12 -0.814 0.424 -0.503 ## 9 -1.22 -0.726 -0.754 0.605 -0.0687 2.83 1.12 -0.814 0.424 -0.503 ## 10 -0.105 -0.509 -0.345 0.605 0.228 0.253 1.12 -0.814 0.424 0.735 ## # … with 22 more rows, and 1 more variable: mpg <dbl> 26 / 39
  34. Types of data splitting - Random - By date -

    By outcome - Classi cation: within class - regression: within quantile 28 / 39
  35. Training and Testing sets library(rsample) set.seed(4595) # These slides were

    almost finished and I didn't want to change the data in all the other slides big_mtcars <- rerun(10, mtcars) %>% bind_rows() data_split <- initial_split(big_mtcars, strata = "mpg", p = 0.80) # Training and test data cars_train <- training(data_split) cars_test <- testing(data_split) car_prep <- prep(car_rec, training = cars_train) # Preprocessed data cars_train_p <- juice(car_prep) cars_test_p <-bake(car_prep, new_data = cars_test) 31 / 39
  36. Cross-Validating (sneak peak) set.seed(1234) cv_splits <- vfold_cv( data = big_mtcars,

    v = 10, strata = "mpg" ) cv_splits ## # 10-fold cross-validation using stratification ## # A tibble: 10 x 2 ## splits id ## <list> <chr> ## 1 <split [288/32]> Fold01 ## 2 <split [288/32]> Fold02 ## 3 <split [288/32]> Fold03 ## 4 <split [288/32]> Fold04 ## 5 <split [288/32]> Fold05 ## 6 <split [288/32]> Fold06 ## 7 <split [288/32]> Fold07 ## 8 <split [288/32]> Fold08 ## 9 <split [288/32]> Fold09 ## 10 <split [288/32]> Fold10 32 / 39
  37. car_form <- mpg ~ disp + qsec + cyl #

    Fit on a single analysis resample fit_model <- function(split, spec) { fit( object = nearest_neighbor() %>% set_engine("kknn"), formula = car_form, data = analysis(split) # <- pull out training set ) } # For each resample, call fit_model() cv_splits <- cv_splits %>% mutate(models_knn = map(splits, fit_model, spec_lm), ) cv_splits ## # 10-fold cross-validation using stratification ## # A tibble: 10 x 3 ## splits id models_knn ## * <list> <chr> <list> ## 1 <split [288/32]> Fold01 <fit[+]> ## 2 <split [288/32]> Fold02 <fit[+]> ## 3 <split [288/32]> Fold03 <fit[+]> ## 4 <split [288/32]> Fold04 <fit[+]> ## 5 <split [288/32]> Fold05 <fit[+]> ## 6 <split [288/32]> Fold06 <fit[+]> ## 7 <split [288/32]> Fold07 <fit[+]> ## 8 <split [288/32]> Fold08 <fit[+]> ## 9 <split [288/32]> Fold09 <fit[+]> ## 10 <split [288/32]> Fold10 <fit[+]> 33 / 39
  38. library(yardstick) head(two_class_example) ## truth Class1 Class2 predicted ## 1 Class2

    0.003589243 0.9964107574 Class2 ## 2 Class1 0.678621054 0.3213789460 Class1 ## 3 Class2 0.110893522 0.8891064779 Class2 ## 4 Class1 0.735161703 0.2648382969 Class1 ## 5 Class2 0.016239960 0.9837600397 Class2 ## 6 Class1 0.999275071 0.0007249286 Class1 35 / 39
  39. library(yardstick) head(two_class_example) ## truth Class1 Class2 predicted ## 1 Class2

    0.003589243 0.9964107574 Class2 ## 2 Class1 0.678621054 0.3213789460 Class1 ## 3 Class2 0.110893522 0.8891064779 Class2 ## 4 Class1 0.735161703 0.2648382969 Class1 ## 5 Class2 0.016239960 0.9837600397 Class2 ## 6 Class1 0.999275071 0.0007249286 Class1 metrics(two_class_example, truth = truth, estimate = predicted) ## # A tibble: 2 x 3 ## .metric .estimator .estimate ## <chr> <chr> <dbl> ## 1 accuracy binary 0.838 ## 2 kap binary 0.675 35 / 39
  40. library(yardstick) head(two_class_example) ## truth Class1 Class2 predicted ## 1 Class2

    0.003589243 0.9964107574 Class2 ## 2 Class1 0.678621054 0.3213789460 Class1 ## 3 Class2 0.110893522 0.8891064779 Class2 ## 4 Class1 0.735161703 0.2648382969 Class1 ## 5 Class2 0.016239960 0.9837600397 Class2 ## 6 Class1 0.999275071 0.0007249286 Class1 accuracy(two_class_example, truth = truth, estimate = predicted) ## # A tibble: 1 x 3 ## .metric .estimator .estimate ## <chr> <chr> <dbl> ## 1 accuracy binary 0.838 36 / 39
  41. library(yardstick) head(two_class_example) ## truth Class1 Class2 predicted ## 1 Class2

    0.003589243 0.9964107574 Class2 ## 2 Class1 0.678621054 0.3213789460 Class1 ## 3 Class2 0.110893522 0.8891064779 Class2 ## 4 Class1 0.735161703 0.2648382969 Class1 ## 5 Class2 0.016239960 0.9837600397 Class2 ## 6 Class1 0.999275071 0.0007249286 Class1 j_index(two_class_example, truth = truth, estimate = predicted) ## # A tibble: 1 x 3 ## .metric .estimator .estimate ## <chr> <chr> <dbl> ## 1 j_index binary 0.673 And many more!! 37 / 39
  42. library(yardstick) head(two_class_example) ## truth Class1 Class2 predicted ## 1 Class2

    0.003589243 0.9964107574 Class2 ## 2 Class1 0.678621054 0.3213789460 Class1 ## 3 Class2 0.110893522 0.8891064779 Class2 ## 4 Class1 0.735161703 0.2648382969 Class1 ## 5 Class2 0.016239960 0.9837600397 Class2 ## 6 Class1 0.999275071 0.0007249286 Class1 conf_mat(two_class_example, truth = truth, estimate = predicted) ## Truth ## Prediction Class1 Class2 ## Class1 227 50 ## Class2 31 192 38 / 39