Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
75
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
190
Infinite State Machine
ericqweinstein
1
110
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
90
Machine Learning with Elixir and Phoenix
ericqweinstein
1
910
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
380
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
940
Other Decks in Technology
See All in Technology
ペアーズにおけるData Catalog導入の取り組み
hisamouna
0
250
20250328_RubyKaigiで出会い鯛_____RubyKaigiから始まったはじめてのOSSコントリビュート.pdf
mterada1228
0
420
Amazon Q Developer 他⽣成AIと⽐較してみた
takano0131
1
140
自分の軸足を見つけろ
tsuemura
1
150
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
260
「それはhowなんよ〜」のガイドライン #orestudy
77web
9
2.3k
AIエージェントキャッチアップと論文リサーチ
os1ma
6
1.4k
TopAppBar Composableをカスタムする
hunachi
0
170
Spice up your notifications/try!Swift25
noppefoxwolf
1
110
新卒1年目のフロントエンド開発での取り組み/New grad front-end efforts
kaonavi
0
140
入社後SREチームのミッションや課題の整理をした話
morix1500
1
230
Enterprise AI in 2025?
pamelafox
0
130
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
522
39k
GraphQLとの向き合い方2022年版
quramy
45
14k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.2k
The Cult of Friendly URLs
andyhume
78
6.3k
How to Ace a Technical Interview
jacobian
276
23k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
KATA
mclloyd
29
14k
How GitHub (no longer) Works
holman
314
140k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!