Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
100
Value Your Types!
ericqweinstein
0
61
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.7k
What If...?: Ruby 3
ericqweinstein
1
180
Infinite State Machine
ericqweinstein
1
94
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
80
Machine Learning with Elixir and Phoenix
ericqweinstein
1
880
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
350
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
880
Other Decks in Technology
See All in Technology
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
170
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.4k
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
SSMRunbook作成の勘所_20241120
koichiotomo
3
160
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
220
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
900
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
520
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
150
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
310
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
1
1k
Zennのパフォーマンスモニタリングでやっていること
ryosukeigarashi
0
160
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
4 Signs Your Business is Dying
shpigford
180
21k
Speed Design
sergeychernyshev
25
620
Building Adaptive Systems
keathley
38
2.3k
Side Projects
sachag
452
42k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Large-scale JavaScript Application Architecture
addyosmani
510
110k
How GitHub (no longer) Works
holman
310
140k
KATA
mclloyd
29
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
GraphQLとの向き合い方2022年版
quramy
43
13k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!