Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
70
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
190
Infinite State Machine
ericqweinstein
1
100
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
88
Machine Learning with Elixir and Phoenix
ericqweinstein
1
900
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
370
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
910
Other Decks in Technology
See All in Technology
現場で役立つAPIデザイン
nagix
33
12k
なぜ私は自分が使わないサービスを作るのか? / Why would I create a service that I would not use?
aiandrox
0
760
Culture Deck
optfit
0
420
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
クラウドサービス事業者におけるOSS
tagomoris
2
850
リーダブルテストコード 〜メンテナンスしやすい テストコードを作成する方法を考える〜 #DevSumi #DevSumiB / Readable test code
nihonbuson
11
7.3k
地方拠点で エンジニアリングマネージャーってできるの? 〜地方という制約を楽しむオーナーシップとコミュニティ作り〜
1coin
1
230
次世代KYC活動報告 / 20250219-BizDay17-KYC-nextgen
oidfj
0
260
表現を育てる
kiyou77
1
210
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.9k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
24
7.2k
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
730
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Docker and Python
trallard
44
3.3k
Unsuck your backbone
ammeep
669
57k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
RailsConf 2023
tenderlove
29
1k
Why Our Code Smells
bkeepers
PRO
336
57k
Side Projects
sachag
452
42k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
51k
Facilitating Awesome Meetings
lara
52
6.2k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!