Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
120
Value Your Types!
ericqweinstein
0
89
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
210
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
100
Machine Learning with Elixir and Phoenix
ericqweinstein
1
960
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
410
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
990
Other Decks in Technology
See All in Technology
allow_retry と Arel.sql / allow_retry and Arel.sql
euglena1215
1
160
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
12
4.7k
ChatGPTとPlantUML/Mermaidによるソフトウェア設計
gowhich501
1
130
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
410
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
9.9k
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
830
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
550
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.7k
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
160
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
190
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.5k
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Typedesign – Prime Four
hannesfritz
42
2.8k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Facilitating Awesome Meetings
lara
55
6.5k
Code Review Best Practice
trishagee
70
19k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Thoughts on Productivity
jonyablonski
70
4.8k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!