Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
120
Value Your Types!
ericqweinstein
0
90
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
210
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
100
Machine Learning with Elixir and Phoenix
ericqweinstein
1
960
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
410
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
990
Other Decks in Technology
See All in Technology
Apache Spark もくもく会
taka_aki
0
140
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
5
2.5k
Create Ruby native extension gem with Go
sue445
0
130
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ:はじめてのローカルLLM
stanaka26
0
100
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
500
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.2k
スタートアップこそ全員で Platform Engineering スピードと持続性を両立する文化の作り方
anizozina
1
100
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
3
200
会社紹介資料 / Sansan Company Profile
sansan33
PRO
7
380k
データ分析エージェント Socrates の育て方
na0
8
3k
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
120
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
210
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
For a Future-Friendly Web
brad_frost
180
9.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Thoughts on Productivity
jonyablonski
70
4.8k
A Tale of Four Properties
chriscoyier
160
23k
Context Engineering - Making Every Token Count
addyosmani
3
63
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Docker and Python
trallard
46
3.6k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!