Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
85
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
200
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
96
Machine Learning with Elixir and Phoenix
ericqweinstein
1
940
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
400
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
970
Other Decks in Technology
See All in Technology
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
460
解析の定理証明実践@Lean 4
dec9ue
0
180
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
240
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
750
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
270
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
220
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
450
Lambda Web Adapterについて自分なりに理解してみた
smt7174
3
110
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
5
630
HiMoR: Monocular Deformable Gaussian Reconstruction with Hierarchical Motion Representation
spatial_ai_network
0
110
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Navigating Team Friction
lara
187
15k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Unsuck your backbone
ammeep
671
58k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Documentation Writing (for coders)
carmenintech
72
4.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
It's Worth the Effort
3n
185
28k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!