Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
100
Value Your Types!
ericqweinstein
0
63
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.7k
What If...?: Ruby 3
ericqweinstein
1
180
Infinite State Machine
ericqweinstein
1
97
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
82
Machine Learning with Elixir and Phoenix
ericqweinstein
1
880
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
350
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
900
Other Decks in Technology
See All in Technology
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
DevFest 2024 Incheon / Songdo - Compose UI 조합 심화
wisemuji
0
110
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
120
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
170
.NET 9 のパフォーマンス改善
nenonaninu
0
1k
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
230
PHPからGoへのマイグレーション for DMMアフィリエイト
yabakokobayashi
1
170
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
540
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
600
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
560
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
460
フロントエンド設計にモブ設計を導入してみた / 20241212_cloudsign_TechFrontMeetup
bengo4com
0
1.9k
Featured
See All Featured
Visualization
eitanlees
146
15k
Building Adaptive Systems
keathley
38
2.3k
Designing for Performance
lara
604
68k
Typedesign – Prime Four
hannesfritz
40
2.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Docker and Python
trallard
42
3.1k
How STYLIGHT went responsive
nonsquared
95
5.2k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
How to Ace a Technical Interview
jacobian
276
23k
The Cost Of JavaScript in 2023
addyosmani
45
7k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
The Invisible Side of Design
smashingmag
298
50k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!