$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning with Clojure and Apache Spark
Search
Eric Weinstein
October 25, 2016
Technology
1
420
Machine Learning with Clojure and Apache Spark
Slides for my EuroClojure 2016 talk on machine learning.
Eric Weinstein
October 25, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
130
Value Your Types!
ericqweinstein
0
100
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
220
Infinite State Machine
ericqweinstein
1
140
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
110
Machine Learning with Elixir and Phoenix
ericqweinstein
1
970
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
ericqweinstein
1
1.5k
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.3k
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
学習データって増やせばいいんですか?
ftakahashi
2
460
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
2
120
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
390
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
610
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
210
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
120
.NET 10の概要
tomokusaba
0
110
ActiveJobUpdates
igaiga
1
130
Featured
See All Featured
Optimizing for Happiness
mojombo
379
70k
How to train your dragon (web standard)
notwaldorf
97
6.4k
The Cult of Friendly URLs
andyhume
79
6.7k
Visualization
eitanlees
150
16k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Designing Experiences People Love
moore
143
24k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
We Have a Design System, Now What?
morganepeng
54
7.9k
Transcript
Machine Learning with Clojure and Apache Spark ;; Eric Weinstein
;; EuroClojure 2016 ;; Bratislava, Slovakia ;; 25 October 2016
for Joshua
Part 0: Hello!
About Me (def eric-weinstein {:employer "Hulu" :github "ericqweinstein" :twitter "ericqweinstein"
:website "ericweinste.in"}) 30% off with EURORUBY30!
Agenda • Machine learning • Apache Spark • Flambo vs.
Sparkling • DL4J, deep learning, and convolutional neural networks
Part 1: ⚡✨
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
What’s Apache Spark? Apache Spark is an open-source cluster computing
framework; its parallelism makes it ideal for processing large data sets, and in ML, the more data, the better!
Some Spark Terminology • RDD: Resilient Distributed Dataset • Dataset:
RDD + Spark SQL execution engine • DataFrame: Dataset organized into named columns
Our Data • Police stop data for the city of
Los Angeles, California in 2015 • 4 features, ~600,000 instances • http://bit.ly/2f9jVwn
Features && Labels • Sex (Male | Female) • Race
(American Indian | Asian | Black | Hispanic | White | Other) • Stop type (Pedestrian | Vehicle) • Post-stop activity (Yes | No)
Features && Labels • Sex (Male | Female) • Race
(American Indian | Asian | Black | Hispanic | White | Other) • Stop type (Pedestrian | Vehicle) • Post-stop activity (Yes | No)
Decision Trees X[0] <= 0.5 gini = 0.4033 samples =
139572 value = [100477, 39095] X[1] <= 5.5 gini = 0.4318 samples = 102419 value = [70118, 32301] True X[1] <= 5.5 gini = 0.2989 samples = 37153 value = [30359, 6794] False X[1] <= 4.5 gini = 0.4399 samples = 96665 value = [65083, 31582] gini = 0.2187 samples = 5754 value = [5035, 719] X[1] <= 3.5 gini = 0.4483 samples = 78400 value = [51805, 26595] gini = 0.397 samples = 18265 value = [13278, 4987] X[1] <= 2.5 gini = 0.4324 samples = 51662 value = [35328, 16334] gini = 0.473 samples = 26738 value = [16477, 10261] X[1] <= 0.5 gini = 0.4406 samples = 48927 value = [32894, 16033] gini = 0.1959 samples = 2735 value = [2434, 301] gini = 0.4658 samples = 65 value = [41, 24] gini = 0.4406 samples = 48862 value = [32853, 16009] X[1] <= 3.5 gini = 0.3067 samples = 34817 value = [28234, 6583] gini = 0.1643 samples = 2336 value = [2125, 211] X[1] <= 2.5 gini = 0.2796 samples = 15786 value = [13133, 2653] X[1] <= 4.5 gini = 0.3277 samples = 19031 value = [15101, 3930] X[1] <= 0.5 gini = 0.2921 samples = 13985 value = [11501, 2484] gini = 0.1701 samples = 1801 value = [1632, 169] gini = 0.426 samples = 26 value = [18, 8] gini = 0.2918 samples = 13959 value = [11483, 2476] gini = 0.3747 samples = 9522 value = [7144, 2378] gini = 0.2732 samples = 9509 value = [7957, 1552]
Part 2: A Tale of Two DSLs vs. ✨✨ Image
credit: Adventure Time
Flambo Example (defn make-spark-context "Creates the Apache Spark context using
the Flambo DSL." [] (-> (conf/spark-conf) (conf/master "local") (conf/app-name "euroclojure") (f/spark-context)))
Sparkling Example (defn make-spark-context "Creates the Apache Spark context using
the Sparkling DSL." [] (-> (conf/spark-conf) (conf/master "local") (conf/app-name "euroclojure") (spark/spark-context)))
Straight Spark (def model (DecisionTree/trainClassifier training 2 categorical-features- info "gini"
5 32)) ; max depth: 5, max leaves: 32 (defn predict [p] ; LabeledPoint (let [prediction (.predict model (.features p))] [(.label p) prediction]))
Accuracy: 0.77352
Part 3: Deep Learning
What’s Deep Learning? • Neural networks (computational architecture modeled after
the human brain) • Neural networks with many layers (> 1 hidden layer, but in practice, can be hundreds) • The vanishing/exploding gradient problem
Vanishing && Gradients
Image credit for all ConvNet images: https://deeplearning4j.org/convolutionalnets
Max Pooling/Downsampling
Alternating Layers
Our Data Image credit: http://digitalmedia.fws.gov/cdm/
What’s DL4J? • DL4J == Deep Learning 4 Java, a
library (for Java, unsurprisingly) • Examples on GitHub: https://github.com/ deeplearning4j/deeplearning4j • ConvNet worked example: http://bit.ly/2eBM8ss
DL4J Example (def nn-conf (-> (NeuralNetConfiguration$Builder.) ;; Some values omitted
for space (.activation "relu") (.learningRate 0.0001) (.weightInit (WeightInit/XAVIER)) (.optimizationAlgo OptimizationAlgorithm/STOCHASTIC_GRADIENT_DESCENT) (.updater Updater/RMSPROP) (.momentum 0.9) (.list) (.layer 0 conv-init) (.layer 1 (max-pool "maxpool1" (int-array [2 2]))) (.layer 2 (conv-5x5 "cnn2" 100 (int-array [5 5]) (int-array [1 1]) 0)) (.layer 3 (max-pool "maxpool2" (int-array [2 2]))) (.layer 4 (fully-connected 500)) (.layer 5 output-layer) (.build)))
How’d We Do? • Accuracy: 0.375 • Precision: 0.3333 •
Recall: 0.375 • F1 Score: 0.3529
Summary • Clojure + Spark = • Flambo and Sparkling
are roughly equally powerful • Deep learning is super doable with Clojure (though Java interop is kind of a pain)
Takeaways (TL;DPA) • Contribute to Flambo and/or Sparkling! • Let’s
build or contribute to a nicer DSL for DL4J • https://github.com/ericqweinstein/euroclojure
None