Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning with Clojure and Apache Spark
Search
Eric Weinstein
October 25, 2016
Technology
1
360
Machine Learning with Clojure and Apache Spark
Slides for my EuroClojure 2016 talk on machine learning.
Eric Weinstein
October 25, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
100
Value Your Types!
ericqweinstein
0
66
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
190
Infinite State Machine
ericqweinstein
1
99
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
84
Machine Learning with Elixir and Phoenix
ericqweinstein
1
890
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
ericqweinstein
1
1.4k
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
910
Other Decks in Technology
See All in Technology
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.7k
東京Ruby会議12 Ruby と Rust と私 / Tokyo RubyKaigi 12 Ruby, Rust and me
eagletmt
3
870
新卒1年目、はじめてのアプリケーションサーバー【IBM WebSphere Liberty】
ktgrryt
0
120
Amazon Route 53, 待ちに待った TLSAレコードのサポート開始
kenichinakamura
0
170
Unsafe.BitCast のすゝめ。
nenonaninu
0
200
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
150
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
re:Invent 2024のふりかえり
beli68
0
110
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
860
Reactフレームワークプロダクトを モバイルアプリにして、もっと便利に。 ユーザに価値を届けよう。/React Framework with Capacitor
rdlabo
0
130
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
2024年活動報告会(人材育成推進WG・ビジネスサブWG) / 20250114-OIDF-J-EduWG-BizSWG
oidfj
0
230
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Faster Mobile Websites
deanohume
305
30k
Code Reviewing Like a Champion
maltzj
521
39k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Automating Front-end Workflow
addyosmani
1366
200k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
The Cult of Friendly URLs
andyhume
78
6.1k
Visualization
eitanlees
146
15k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
Transcript
Machine Learning with Clojure and Apache Spark ;; Eric Weinstein
;; EuroClojure 2016 ;; Bratislava, Slovakia ;; 25 October 2016
for Joshua
Part 0: Hello!
About Me (def eric-weinstein {:employer "Hulu" :github "ericqweinstein" :twitter "ericqweinstein"
:website "ericweinste.in"}) 30% off with EURORUBY30!
Agenda • Machine learning • Apache Spark • Flambo vs.
Sparkling • DL4J, deep learning, and convolutional neural networks
Part 1: ⚡✨
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
What’s Apache Spark? Apache Spark is an open-source cluster computing
framework; its parallelism makes it ideal for processing large data sets, and in ML, the more data, the better!
Some Spark Terminology • RDD: Resilient Distributed Dataset • Dataset:
RDD + Spark SQL execution engine • DataFrame: Dataset organized into named columns
Our Data • Police stop data for the city of
Los Angeles, California in 2015 • 4 features, ~600,000 instances • http://bit.ly/2f9jVwn
Features && Labels • Sex (Male | Female) • Race
(American Indian | Asian | Black | Hispanic | White | Other) • Stop type (Pedestrian | Vehicle) • Post-stop activity (Yes | No)
Features && Labels • Sex (Male | Female) • Race
(American Indian | Asian | Black | Hispanic | White | Other) • Stop type (Pedestrian | Vehicle) • Post-stop activity (Yes | No)
Decision Trees X[0] <= 0.5 gini = 0.4033 samples =
139572 value = [100477, 39095] X[1] <= 5.5 gini = 0.4318 samples = 102419 value = [70118, 32301] True X[1] <= 5.5 gini = 0.2989 samples = 37153 value = [30359, 6794] False X[1] <= 4.5 gini = 0.4399 samples = 96665 value = [65083, 31582] gini = 0.2187 samples = 5754 value = [5035, 719] X[1] <= 3.5 gini = 0.4483 samples = 78400 value = [51805, 26595] gini = 0.397 samples = 18265 value = [13278, 4987] X[1] <= 2.5 gini = 0.4324 samples = 51662 value = [35328, 16334] gini = 0.473 samples = 26738 value = [16477, 10261] X[1] <= 0.5 gini = 0.4406 samples = 48927 value = [32894, 16033] gini = 0.1959 samples = 2735 value = [2434, 301] gini = 0.4658 samples = 65 value = [41, 24] gini = 0.4406 samples = 48862 value = [32853, 16009] X[1] <= 3.5 gini = 0.3067 samples = 34817 value = [28234, 6583] gini = 0.1643 samples = 2336 value = [2125, 211] X[1] <= 2.5 gini = 0.2796 samples = 15786 value = [13133, 2653] X[1] <= 4.5 gini = 0.3277 samples = 19031 value = [15101, 3930] X[1] <= 0.5 gini = 0.2921 samples = 13985 value = [11501, 2484] gini = 0.1701 samples = 1801 value = [1632, 169] gini = 0.426 samples = 26 value = [18, 8] gini = 0.2918 samples = 13959 value = [11483, 2476] gini = 0.3747 samples = 9522 value = [7144, 2378] gini = 0.2732 samples = 9509 value = [7957, 1552]
Part 2: A Tale of Two DSLs vs. ✨✨ Image
credit: Adventure Time
Flambo Example (defn make-spark-context "Creates the Apache Spark context using
the Flambo DSL." [] (-> (conf/spark-conf) (conf/master "local") (conf/app-name "euroclojure") (f/spark-context)))
Sparkling Example (defn make-spark-context "Creates the Apache Spark context using
the Sparkling DSL." [] (-> (conf/spark-conf) (conf/master "local") (conf/app-name "euroclojure") (spark/spark-context)))
Straight Spark (def model (DecisionTree/trainClassifier training 2 categorical-features- info "gini"
5 32)) ; max depth: 5, max leaves: 32 (defn predict [p] ; LabeledPoint (let [prediction (.predict model (.features p))] [(.label p) prediction]))
Accuracy: 0.77352
Part 3: Deep Learning
What’s Deep Learning? • Neural networks (computational architecture modeled after
the human brain) • Neural networks with many layers (> 1 hidden layer, but in practice, can be hundreds) • The vanishing/exploding gradient problem
Vanishing && Gradients
Image credit for all ConvNet images: https://deeplearning4j.org/convolutionalnets
Max Pooling/Downsampling
Alternating Layers
Our Data Image credit: http://digitalmedia.fws.gov/cdm/
What’s DL4J? • DL4J == Deep Learning 4 Java, a
library (for Java, unsurprisingly) • Examples on GitHub: https://github.com/ deeplearning4j/deeplearning4j • ConvNet worked example: http://bit.ly/2eBM8ss
DL4J Example (def nn-conf (-> (NeuralNetConfiguration$Builder.) ;; Some values omitted
for space (.activation "relu") (.learningRate 0.0001) (.weightInit (WeightInit/XAVIER)) (.optimizationAlgo OptimizationAlgorithm/STOCHASTIC_GRADIENT_DESCENT) (.updater Updater/RMSPROP) (.momentum 0.9) (.list) (.layer 0 conv-init) (.layer 1 (max-pool "maxpool1" (int-array [2 2]))) (.layer 2 (conv-5x5 "cnn2" 100 (int-array [5 5]) (int-array [1 1]) 0)) (.layer 3 (max-pool "maxpool2" (int-array [2 2]))) (.layer 4 (fully-connected 500)) (.layer 5 output-layer) (.build)))
How’d We Do? • Accuracy: 0.375 • Precision: 0.3333 •
Recall: 0.375 • F1 Score: 0.3529
Summary • Clojure + Spark = • Flambo and Sparkling
are roughly equally powerful • Deep learning is super doable with Clojure (though Java interop is kind of a pain)
Takeaways (TL;DPA) • Contribute to Flambo and/or Sparkling! • Let’s
build or contribute to a nicer DSL for DL4J • https://github.com/ericqweinstein/euroclojure
None