nite de fi nes a discrepancy: For a random shift, K : [0,1]d × [0,1]d → ℝ D2({xi }n−1 i=0 , K) := ∫ [0,1]d×[0,1]d K(t, x) dtdx − 2 n n−1 ∑ i=0 ∫ [0,1]d K(xi , x) dx + 1 n2 n−1 ∑ i,j=0 K(xi , xj ) Δ ∼ 𝒰 [0,1)d <latexit sha1_base64="0dvSkPGW3Bgqb6qZVNR/SU9Uwu0=">AAAIFHiclVVdb9s2FFXjbu68r6Z93Asxb0WyqYGl1akxoEPRJeiwYGhWLG1ayzEoibLZUKJGUk48gn9jv2Zvw173Ouzf7EpWUkuWgFUwZJrnnMv7xWs/ZVSqweDfG1udm++93731Qe/Djz7+5NPb23deSJ6JgJwEnHFx6mNJGE3IiaKKkdNUEBz7jLz0z7/P8ZcLIiTlyS9qmZJJjGcJjWiAFWxNt7f+8Xwyo4nGjM6Sr0zPi7Ga+74+NMjz6YyND87cHU97PmehXMbwpS/NlKKv0fqWd0CYwrkk5mEFcYxnppo+Gpgzndx3jH20WxgWE9S7hx6hXrP9msi7oCGZY6WPDMi9nqfIpdIXcyIIglPfojvrhpSxUdXwLrqHvoVTPZqoqR4PbGdyFhp0VJPVols2B2ajXtX6/5NBAOBWnmYR69BsSH7NMEiKAD0oY5zOdUoE5SH9jQAdvM0z8O5pQ3m676Nq7HAQjYlE16l4l1y2xwEpbINWaYoEDiAXOjlzAZZZDH7bb649b3Wj6L26J9M3aBdqQZLwuo1709v9wd6geNDmwikXfat8jqfbN7/wQh5kMUlUwLCUY2eQqonGQtGAEbgZmSQpDs7xjOg5YQuiYE+QhFwEPI4xHO5FOKZsGZIIZ0wZ7cnoal1RXxb3FvYAhXtb/NLnZJlwRZ4KvDT6+dMnRo+GdvEx6EvUHxZPz9skN5p5wjJSmoHKOiPbGe03M59DU62Izsix3W/sQTPvFWGMX5RUdzi0XeehPWwhPxM4mV054D5wwYUHheG1LOBY5hWE6PJGkXUs32zEYsgnFeBKdTdvNhlJkKSCL6B7JCq0gVjnjTMVjSaaJmmmSBIAG7AoY0hxlM9HFFJBAsWWsMCBoFB7FMwxdKuCKVo50ef8XGFfgh/rPbC6smbsTLT2GmrSd4ypSUTYJimK06BYth5yVaYGERdtoqtylaIDAhdAkJ8gfc9g9GAFTG+BhdH5qwUP+MLo/NWCxxIOyF8tuCgIYsVYd/tYcB/uUvm/dFyP6vDyLXhYB0MalWgxiGro4tRUJujpBuF1lfDaGJgrTn2KbC5euHvO/t7+z27/8Y/lhLllfWZ9bu1YjvXQemz9YB1bJ1bQ+a4TduJO0v29+0f3z+5fK+rWjVJz16o83b//A3Ry5QI=</latexit> E D2({xi + ! mod 1}n→1 i=0 , K) = D2({xi }n→1 i=0 , K) where K(t, x) := [0,1]d K(t + y mod 1, x + y mod 1) dy periodized K D2({xi }n→1 i=0 , K) = → [0,1]d↑[0,1]d K(t, x) dtdx + 1 n2 n→1 i,j=0 K(xi, xj) 11