An adaptive algorithm employing continuous linear functionals. In: P. L'Ecuyer, B. Tu ff i n (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Rennes, France, July 2018, Springer Proceedings in Mathematics and Statistics, vol. 324, pp. 161–181. Springer, Cham (2020). DOI: 10.1007/978-3-030-43465-6\_8 Ding, Y., Hickernell, F.J., Kritzer, P., Mak, S.: Adaptive approximation for multivariate linear problems with inputs lying in a cone. In: F.J. Hickernell, P. Kritzer (eds.) Multivariate Algorithms and Information-Based Complexity, pp. 109–145. DeGruyter, Berlin/Boston (2020). DOI: 10.1515/9783110635461-007} Emenike, O., Hickernell, F.J., Kritzer, P.: A uni fi ed treatment of tractability for approximation problems de fi ned on Hilbert spaces. J. Complexity 84, 101856 (2024). DOI: 10.1016/j.jco.2024.101856 Krieg, D., Kritzer, P.: Homogeneous algorithms and solvable problems on cones. J.\ Complexity 83, 101840 (2024). DOI: 10.1016/j.jco.2024.101840 Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume I: Linear Information. No. 6 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2008) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume III: Standard Information for Operators. No. 18 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2012) 14