Sep 12, 2025 The Quality of Extensible Lattice and Kronecker Sequences • Joint work with Claude Hall, Jr. Larysa Matiuika, Jimmy Nguyen, Alexander Pride, and the QMCPy team • Thanks to US National Science Foundation #2316011 • Thanks to the organizers Slides at speakerdeck.com/fjhickernell/hda-2025
point of a low discrepancy sequence Dropping the fi rst point in a low-discrepancy sequence like the Sobol sequence is generally a bad idea because it breaks the sequence's balance and properties, potentially being "very detrimental" to the resulting estimates, though some techniques like scrambling or a speci fi c context like transforming to a Gaussian distribution might warrant considering changes to the initial points. For instance, if the original Gaussian point is in fi nite after a transformation, skipping it might be necessary, but it requires fi nding better remedies than simply skipping the point. 2
preferred sample sizes of n = 1, b, b2, … • IID samples have no preferred sample sizes • How well can we do by constructing extensible lattice and Kronecker sequences that are - Good for all and ? - An alternative to Halton or digital sequences? n = 1, 2, 3,… d = 1, 2, 3,… 3
preferred sample sizes of n = 1, b, b2, … • IID samples have no preferred sample sizes • How well can we do by constructing extensible lattice and Kronecker sequences that are - Good for all and ? - An alternative to Halton or digital sequences? n = 1, 2, 3,… d = 1, 2, 3,… • Why? - Run out of time - Missing data 3
for , using equal sample weights do no better than error [H, Kritzer, Kuo, Nuyens 2012] n = 1, 2, 3,… 𝒪 (n−1) • Good lattice by component-by-component (CBC) constructions for and [Nuyens & Cools, 2006], [Dick, Kuo, Sloan 2013] ζ d = 1, 2, … n = 1, b, b2, … 6
= deviation of the empirical distribution from the target distribution • Di ff erent choices of Banach or Hilbert space yield di ff erent discrepancies • We choose a convenient D({xi }n−1 i=0 , ℱ) := sup ∥f∥ℱ ≤1 ∫ [0,1]d f(x) dx − 1 n n−1 ∑ i=0 f(xi ) ℱ ℱ 7
Ding & H 2025+] Proof by noting that the fi rst points of a lattice are the union of lattices ∥f∥ℱα,∞ := sup k∈ℤd ([ d ∏ ℓ=1 max(1,[γ−1 ℓ |kℓ |]α)] ̂ f(k) ) , smoothness α > 1 n = 2, 3,… ζ <latexit sha1_base64="AZKovyt3dhJTNo+7G1MuEiLEX6c=">AAAG63icdVRRb9s2EFa81uvcbms27GkvxLwW9qoEllenBoYCRZqsQ4GhWbG0aUPHoCTKJkKRAkm7Fgj+ir0Ne+1r/0//zU6K1NqOTRg09X3fHY+8O4YZZ9r0eh93Gl/cuNn88tZXrdt3vv7m27u7373ScqYiehpJLtVZSDTlTNBTwwynZ5miJA05fR1ePi3413OqNJPib5NndJSSiWAJi4gBaLy78wGHdMKEJZxNxC+uddTBFoeSxzpP4c8u3JhhN7bscc9dWLEXOB+nxEx1pOzvgGPCsynxMROJyV0X3cecotbTToWjZV94QtKUOABpphmXwkdxF+FEkciG4NkGaA+FFzbYu7J2DlXRHcKWii0chnOl2dSKCwt6oDGqIczh1DG5qCICT+Cw0NW+QE1F/MkV2LbuIzzVGYmoHdACMSylGnUwlxMkurWrTvwg6Dp0XsLF1BEAjD7RwYP6PF2H1yP+HJ+hC2OJyJFDwi0FLtBjVAUPh8/Ww2yVn3V6xnfbvf1eOdD1RVAt2l41Tsa7N37GsYxmKRUm4kTr86CXmZElyrCIU9fCM03hCi7JhNop5XNqAFNU0HeRhGzB3jghKeN5TBMy48ZZrJN6vWK9KMsRMGChHMsve0lzIQ19pkju7Mtnh84OB375c+geag/K0cLXxRvdHPIZrdz0/CAY+sHwYLPyJY0rYTAM/P6vfm+z7g3lXL6rpP3BwO8Hj/zBFvELRcSkDqD/sA8hPCwdL90CSXVR7nC6sk3WuQLcyKVwn0xBKKso6JRONJhkSs5ZDPVZtd+y7nxmkuHIMpHNDBURqIFLZhwZiYq2RzFTNDI8hwWJFIPco2hKoPEMPA4rO4ZSXhoSaohjuQauitWdByNr8YactKEd10xUvM2kTM4Gi3zrJnWaNhhJtc2oTldldEShART9E67vRUYVMaDEc6KcLaYtfCTnzhbTFj7VsEExbeFVKVBXiuWwT5QMoZeKZIahPVk/1fHiM3m8TsYsqViV2nidnZ+5lSf87Jrg7argrXPwrgTrr8j1xav+fnCwf/BXv/3kefXC3PJ+9H7yOl7gPfKeeH94J96pFzV+aPzWOGocN9PmP81/m/9dSRs7lc333spovv8fyD506A==</latexit> D({xi }n→1 i=0 , Fω,↑) → C(ω, ω, ε, d) b ↑ 1 1 ↑ b1→ω n→1 ϑω→1n→ω ↓ (log n)ω(d+1)[log log(n + 1)]ω(1+ε) any n n = ϑbp n = n0 + n1 b + ⋯ + nm bm 9
a weighted sum of for all up to is similar for all iζ + Δ mod 1, ζ ∈ [0,1)d, Δ ∼ 𝒰 [0,1)d ESD(n, ζ, Kron) = − K + 1 n2 n−1 ∑ i,j=0 ˜ K ((i − j)ζ mod 1) = − K + 1 n2 [n˜ K (0) + 2 n−1 ∑ k=1 (n − k)˜ K (kζ)] ESD(n, ζ, Kron) n N <latexit sha1_base64="+H+j+ofOc81hiDmHzK3/RmuTUps=">AAAGHnicjVRbb9MwFE5hhVFuGzzyElGQNlRNTVm3CglpGps2gdjGxraypVSOc9JFc+xgO92K5f/Cr+EN8Qqv/BKcNBW9SliVc3q+7zu+nHPsxSQUslr9Xbhxc6546/b8ndLde/cfPFxYfHQiWMIxHGNGGG96SAAJKRzLUBJoxhxQ5BE49S7fpPhpF7gIGf0oezG0ItShYRBiJI2rvfDH9aATUoVI2KEvtCvhWopAnR5tH23ppb2K7XqM+KIXmY9yv4JE2vgiJC94pN5xRvWyXXplv7ZdkURtRY3l6M9qTxshgSi+UNSYRpIHzsLS/wrrfkmQ3xeqkNp6EDCjYUTUvtngss4ZNouBZ4cSuuQC9QdHKrUXytWVajbsScPJjbKVj4P24twz12c4iYBKTJAQ5041li2FuAwxARM+ERAjfIk6oC6AdEEaHwcKV5hFETJruwGKQtLzIUAJkVq5IhjYI+rrLIPGZ1CTweyfuoQeZRJ2OOppdbizqVWjXsl+2n5ul+vZKLmT5KlhNkkCeZhqxXEaFaexNp15CH5OdBpOpfayUp3O+wSEsKucWqvXKzVnvVKfQd7niHYGG6it1swWVrPAQ7eAIpGWgjldmloxjqXOqVhk7jPkZiuj3rSKRCCMJOasG/og7EyL+TDvPJFBo2UqK04kUGzYBgsSYktmp51i+yEHLEnPGAjz0OTexheIIyxNP42s6DF2KZGXFt5wDfTrVZ87LaXcKTkpO1qPSbg/S5IlZ4qiN3ORQZqmiBifJRqkKxdtgWkADu/N9e1n/WWYbhdxrdJpBo5ZV6t0moFHwiyQTjNwnhF4nzG87QPOPN3vf89TB+On2r7+B26Pg34Y5Kh5YfxxtNs04NCT1JwgnI0SzrQ274oz/opMGie1FWdtZe1DrbzxNn9h5q0n1lNryXKsdWvD2rUOrGMLF3YLtHBVuC5+K34v/ij+7FNvFHLNY2tkFH/9BcRZLh8=</latexit> WSESD(N, ω, Kron) := N n=1 n ESD(n, ω, Kron) in O(N) operations ∑bm+1−1 n=bm n ESD(n, Kron) m 13
search • Theoretical justi fi cation for component-by-component search • Stopping criterion for cubature not based on replications, e.g. tracking Fourier coe ff i cients [Jiménez Rugama and H 2016] or Gaussian process credible intervals [Jagadeeswaran and H 2019] • Quick computation of optimal non-uniform sample weights (Toeplitz matrices) • Optimizing digital sequences for all • Quality of sequences with missing data n 19
Pillichshammer, and K. Suzuki. On the quasi- uniformity properties of quasi-Monte Carlo lattice point sets and sequences. arXiv:2502.06202. J. Dick, F. Kuo, and I. H. Sloan. “High dimensional integration — the Quasi- Monte Carlo way”. In: Acta Numer. 22 (2013), pp. 133–288. F. J. H, P. Kritzer, F. Y. Kuo, and D. Nuyens. “Weighted Compound Integration Rules with Higher Order Convergence for All N ”. In: Numer. Algorithms 59 (2012), pp. 161–183. F. J. H and H. Niederreiter. “The Existence of Good Extensible Rank-1 Lattices”. In: J. Complexity 19 (2003), pp. 286–300. R. Jagadeeswaran and F. J. H. “Fast Automatic Bayesian Cubature Using Lattice Sampling”. In: Stat. Comput. 29 (2019), pp. 1215–1229. 22
H. “Adaptive Multidimensional Integration Based on Rank-1 Lattices”. In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Ed. by R. Cools and D. Nuyens. Vol. 163. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin, 2016, pp. 407–422. L. Matiukha, Y. Ding, and F. J. H. The Quality of Lattice Sequences. in preparation.2025+. D. Nuyens and R. Cools. “Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points”. In: J. Complexity 22 (2006), pp. 4–28. R. D. Richtmyer. The Evaluation of De fi nite Integrals, and a Quasi-Monte-Carlo Method Based on the Properties of Algebraic Numbers. Tech. rep.LA-1342. Los Alamos Scienti fi c Laboratory, 1951. 23