Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Big Data, Inteligência Artificial, Machine Lear...

Big Data, Inteligência Artificial, Machine Learning e o que Hollywood não vai te contar

Terra, 2020. O mundo sofreu uma grande mudança com o poder que as máquinas obtiveram. Elas passaram a interferir no dia a dia das pessoas, dão opiniões em decisões, extraem informações dos seres humanos para uso próprio e tudo parece acabado para a sobrevivência da nossa espécie. Esse poderia muito bem ser a sinopse de um filme B de Hollywood, talvez um blockbuster (Transcendence prova isso). Eles gostam muito desse tom dramático. Embora seja uma visão interessante, não é única. Eu tenho uma visão mais otimista sobre o assunto. Segundo estudos do International Data Corporation (IDC), em 2020 chegaremos a 40 mil exabytes, o equivalente a 100 milhões de vezes a quantidade de livros já escritos hoje. Não precisamos esperar chegar em 2020 para tirarmos proveito do que chamamos de Big Data. Essas duas palavras acabam servindo de guarda-chuva para uma série de outras que estão mudando a forma de nos relacionarmos com o mundo. Nessa palestra eu pretendo mostrar alguns insights de como já podemos tirar proveito de coisas como inteligência artificial e machine learning e o que precisamos entender para lidar com tudo isso.

Bruno Henrique - Garu

October 14, 2015
Tweet

More Decks by Bruno Henrique - Garu

Other Decks in Programming

Transcript

  1. "I think we should be very careful about artificial intelligence.

    If I had to guess at what our biggest existential threat is, it’s probably that. So we need to be very careful with artificial intelligence. I’m increasingly inclined to think that there should be some regulatory oversight, maybe at the national and international level, just to make sure that we don’t do something very foolish. With artificial intelligence we’re summoning the demon. You know those stories where there’s the guy with the pentagram, and the holy water, and he’s like — Yeah, he’s sure he can control the demon? Doesn’t work out."
  2. "I think we should be very careful about artificial intelligence.

    If I had to guess at what our biggest existential threat is, it’s probably that. So we need to be very careful with artificial intelligence. I’m increasingly inclined to think that there should be some regulatory oversight, maybe at the national and international level, just to make sure that we don’t do something very foolish. With artificial intelligence we’re summoning the demon. You know those stories where there’s the guy with the pentagram, and the holy water, and he’s like — Yeah, he’s sure he can control the demon? Doesn’t work out."
  3. "I am in the camp that is concerned about super

    intelligence. First the machines will do a lot of jobs for us and not be super intelligent. That should be positive if we manage it well. A few decades after that though the intelligence is strong enough to be a concern. I agree with Elon Musk and some others on this and don't understand why some people are not concerned."
  4. "I am in the camp that is concerned about super

    intelligence. First the machines will do a lot of jobs for us and not be super intelligent. That should be positive if we manage it well. A few decades after that though the intelligence is strong enough to be a concern. I agree with Elon Musk and some others on this and don't understand why some people are not concerned."
  5. "The development of full artificial intelligence could spell the end

    of the human race. Once humans develop artificial intelligence, it would take off on its own, and re-design itself at an ever increasing rate. Humans, who are limited by slow biological evolution, couldn't compete, and would be superseded.”
  6. "The development of full artificial intelligence could spell the end

    of the human race. Once humans develop artificial intelligence, it would take off on its own, and re-design itself at an ever increasing rate. Humans, who are limited by slow biological evolution, couldn't compete, and would be superseded.”
  7. Representação do Conhecimento e Raciocínio Raciocínio/Dedução/Inferência Aprendizagem (Machine learning) Planejamento

    (Automated planning and scheduling) Comunicação (Natural language processing) Percepção (Computer vision, Speech recognition) Movimento e Manipulação (Robotics)
  8. Representação do Conhecimento e Raciocínio Raciocínio/Dedução/Inferência Aprendizagem (Machine learning) Planejamento

    (Automated planning and scheduling) Comunicação (Natural language processing) Percepção (Computer vision, Speech recognition) Movimento e Manipulação (Robotics)
  9. Arthur Samuel (1959) The field of study that gives computers

    the ability to learn without being explicitly programmed.
  10. A computer program is said to learn from experience E

    with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Tom Mitchell (1997)
  11. A computer program is said to learn from experience E

    with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Tom Mitchell (1997)
  12. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200
  13. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200 Instância
  14. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200 Instância Feature
  15. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200 Dataset
  16. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200 Dataset Training Dataset
  17. Nº(Quartos) Nº(Banheiros) Andar Preço (Mil) 3 2 1 460 2

    1 1 340 5 3 2 900 2 1 1 350 1 1 1 200 Dataset Training Dataset Testing Dataset
  18. Dados de Treino ML Alg Modelo Dados de Teste 35%

    Dados de Treino ML Alg Modelo
  19. Dados de Treino ML Alg Modelo Dados de Teste 35%

    Dados de Treino ML Alg Modelo Dados de Teste
  20. Dados de Treino ML Alg Modelo Dados de Teste 35%

    Dados de Treino ML Alg Modelo Dados de Teste 85%
  21. Detecção de Spam Detecção de Fraude de Cartão de Crédito

    Reconhecimento de Digital Reconhecimento de Voz Detecção Facial Recomendação de Produtos Diagnóstico Médico Segmentação de Cliente Detecção de Formato
  22. Every day, we create 2.5 quintillion bytes of data —

    so much that 90% of the data in the world today has been created in the last two years alone
  23. Every day, we create 2.5 quintillion bytes of data —

    so much that 90% of the data in the world today has been created in the last two years alone
  24. Jeff Hammerbacher The best minds of my generation are thinking

    about how to make people click ads, … That sucks.