Δඞཁ͕͋Δɻ(N ڭࢣσʔλͷɻ) Ұํɺओදݱ (ࠓͰύϥϝʔλ w Ͱͷදݱͷํ) Ͱͷղ w ɺ(1.12) ΑΓ w = ( λIM + ΦTΦ )−1 ΦTt (2.12) ͳͷͰɺM × M ͷߦྻͷٯߦྻΛٻΊΔඞཁ͕͋Δɻ(M ಛྔۭ ؒͷ࣍ݩɻ) N ≫ M ͷ࣌ (͜ͷΑ͏ͳ߹͕େଟ)ɺओදݱͰղΛٻΊΔํָ͕ɻ ҰํɺରදݱͰ M ͕ແݶେͷ࣌ͷಛۭؒऔΓѻ͏͜ͱ͕Ͱ͖ Δɻ(2-2 Ͱ M ͕ແݶେͷ࣌ͷಛۭؒͷྫΛڍ͛Δɻ) 20 / 74
(wTϕ(xn ) + b) = an (3.5) ͢Δɻ(an ≤ aj (j ̸= n)) ͦͯ͠ɺw → an w, b → an b ͱ͍͏มΛ͢Δͱɺ tn (wTϕ(xn ) + b) = 1 (3.6) ͱͳΔɻ j ̸= n Ͱ͋Δ j Ͱɺw → an w, b → an b ͱ͍͏มͰ tj (wTϕ(xj ) + b) = aj an ≥ 1 (3.7) ͱͳΔɻ 47 / 74
ξn ͱ ˆ ξn Ͱඍͨࣜ͠Λθ ϩͱஔ͍ͨࣜҎԼͰ͋Δɻ w = N ∑ n=1 (an − ˆ an )ϕ(xn ) (3.52) 0 = N ∑ n=1 (an − ˆ an ) (3.53) an = C − µn , ˆ an = C − ˆ µn (3.54) ͜ΕΒͷࣜΛ༻͍Δͱɺϥάϥϯδϡؔ (3.45) Λ an ͱ ˆ an ͷΈͷؔ Ͱ͔͚ͯɺҎԼͷΑ͏ʹͳΔɻ ˜ L = − 1 2 N ∑ n=1 N ∑ m=1 (an − ˆ an )(am − ˆ am )k(xn , xm ) − ϵ N ∑ n=1 (an + ˆ an ) + N ∑ n=1 (an − ˆ an )tn (3.55) 66 / 74
ˆ an ʹҎԼͷ͕݅ ͘ɻ 0 ≤ an ≤ C (3.56) 0 ≤ ˆ an ≤ C (3.57) ͞Βʹɺ(3.52) Λ y(x) = wTϕ(x) + b ʹೖ͢Δͱɺ y(x) = N ∑ n=1 (an − ˆ an )k(x, xn ) + b (3.58) ͱͳΔɻ 67 / 74