Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MCMCのR-hatは分散分析である
Search
Shota Mori
June 20, 2025
Science
0
500
MCMCのR-hatは分散分析である
Shota Mori
June 20, 2025
Tweet
Share
Other Decks in Science
See All in Science
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
知能とはなにかーヒトとAIのあいだー
tagtag
0
150
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
160
機械学習 - 授業概要
trycycle
PRO
0
270
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
150
データマイニング - ウェブとグラフ
trycycle
PRO
0
190
KH Coderチュートリアル(スライド版)
koichih
1
51k
知能とはなにかーヒトとAIのあいだー
tagtag
0
110
Ignite の1年間の軌跡
ktombow
0
170
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
830
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
420
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
300
Featured
See All Featured
Code Review Best Practice
trishagee
72
19k
A designer walks into a library…
pauljervisheath
210
24k
BBQ
matthewcrist
89
9.9k
Become a Pro
speakerdeck
PRO
29
5.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Embracing the Ebb and Flow
colly
88
4.9k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1k
Writing Fast Ruby
sferik
630
62k
4 Signs Your Business is Dying
shpigford
186
22k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Optimizing for Happiness
mojombo
379
70k
Transcript
MCMCのR-hatは 分散分析である 森翔汰@moricup
Introduction • MCMCのR-hatを知っている人は、これが大きいと 結果の再現性が低いと言えることをご存じでしょう。 • しかし、なぜ再現性が低いと言えるか知る人は少ない印象です。 • 今夜、これを数式で解き明かします!
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが データに合わせた
右寄りの事後分布で 当てはまった
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定 マルコフ鎖ごとに結果がバラつく
分布のお気持ち データの分布は二山 どっちの山に fitしようかな 右の気分 いや、左かも やっぱり 右で
MCMCの再現性を検証したい • 各マルコフ鎖の事後分布の差が 大きいかを確認したい • 各群の差を確認したいようなもの • まるで分散分析 • 実際の統計モデルは複雑
• 可視化には限度がある • そこで R-hat による定量評価 • ベイズ推論ライブラリにも実装されている
R-hatの定義 • 𝑛: マルコフ鎖あたりのサンプル数 • 𝐵: マルコフ鎖間分散(Between) • 𝑊: マルコフ鎖内分散(Within)
𝑅 = 𝑛 − 1 𝑛 𝑊 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊 𝐵 𝑊 = マルコフ鎖間分散 マルコフ鎖内分散 ≈ 群間変動 群内変動 = 𝐹値 つまり、 𝑅が大きいことと、𝐹値が大きいことは同じ! 分散分析
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える!
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える! MCMCのR-hatは、やっぱり分散分析だ!