Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MCMCのR-hatは分散分析である
Search
Shota Mori
June 20, 2025
Science
0
510
MCMCのR-hatは分散分析である
Shota Mori
June 20, 2025
Tweet
Share
Other Decks in Science
See All in Science
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
590
Hakonwa-Quaternion
hiranabe
1
160
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
850
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
540
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
170
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
690
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
270
データベース08: 実体関連モデルとは?
trycycle
PRO
0
990
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
880
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
460
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
370
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
BBQ
matthewcrist
89
9.9k
Bash Introduction
62gerente
615
210k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Designing for humans not robots
tammielis
254
26k
Transcript
MCMCのR-hatは 分散分析である 森翔汰@moricup
Introduction • MCMCのR-hatを知っている人は、これが大きいと 結果の再現性が低いと言えることをご存じでしょう。 • しかし、なぜ再現性が低いと言えるか知る人は少ない印象です。 • 今夜、これを数式で解き明かします!
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが
MCMCとは データの分布を 事前分布を初期分布とする マルコフ鎖(MC)を用いた モンテカルロ法(MC)に基づく 事後分布によって当てはめ することである 決め打ちの事前分布は 左に寄っているが データに合わせた
右寄りの事後分布で 当てはまった
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定
MCMCの再現性が低い例 データの分布は二山 事前分布も二山に設定 マルコフ鎖ごとに結果がバラつく
分布のお気持ち データの分布は二山 どっちの山に fitしようかな 右の気分 いや、左かも やっぱり 右で
MCMCの再現性を検証したい • 各マルコフ鎖の事後分布の差が 大きいかを確認したい • 各群の差を確認したいようなもの • まるで分散分析 • 実際の統計モデルは複雑
• 可視化には限度がある • そこで R-hat による定量評価 • ベイズ推論ライブラリにも実装されている
R-hatの定義 • 𝑛: マルコフ鎖あたりのサンプル数 • 𝐵: マルコフ鎖間分散(Between) • 𝑊: マルコフ鎖内分散(Within)
𝑅 = 𝑛 − 1 𝑛 𝑊 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊
R-hatの解釈 𝑅 = 𝑛 − 1 𝑛 𝑊 +
1 𝑛 𝐵 𝑊 = 𝑛 − 1 𝑛 + 1 𝑛 𝐵 𝑊 𝐵 𝑊 = マルコフ鎖間分散 マルコフ鎖内分散 ≈ 群間変動 群内変動 = 𝐹値 つまり、 𝑅が大きいことと、𝐹値が大きいことは同じ! 分散分析
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える!
まとめ • 分散分析ではF値が大きいと、群に優意差有りと考える • 同じようにMCMCではR-hatが大きいと、 マルコフ鎖に有意差有りと考えられる →結果の再現性を検証できそう! 𝑅 =
1.0 再現性有るかな? 𝑅 = 42.2 再現性低いと言える! MCMCのR-hatは、やっぱり分散分析だ!