Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習 - pandas入門

機械学習 - pandas入門

Y. Yamamoto

April 14, 2025
Tweet

More Decks by Y. Yamamoto

Other Decks in Science

Transcript

  1. ⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング

    グラフ テキスト 画像 ⾏列 (テンソル) 3 1 −4 −1 5 9 2 −6 5 変換
  2. ⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング

    グラフ テキスト 画像 ⾏列 (テンソル) 3 1 −4 −1 5 9 2 −6 5 変換 表データは典型的なデータ分析対象
  3. pandasと関係データベース管理システム (RDBMS) pandas RDBMS 扱える データサイズ 小〜中 (メモリサイズに依存) 大 (サーバ次第)

    処理速度 遅い 速い (索引 & クエリ最適化 の恩恵) 柔軟性 高い (Pythonが使える) 低い (SQLでできることに 限られる) 用途 - Pythonとの連携 - データの前処理 - 大規模データ管理 - 前処理対象となる データの抽出・集約
  4. CSVファイル - 表形式のデータ交換⽤に⽤いられるテキストファイル - CSVファイルの⾏が表の⾏に相当 - 表の各項⽬の値をカンマ(,)で区切る - 1⾏⽬には表の構造を⽰す項⽬名を並べることがある -

    CSVファイルの拡張⼦はcsv ID,都道府県,県庁所在地 1,北海道, 札幌市 2,青森県, 青森市 3,岩手県, 盛岡市 ... CSVファイルの中⾝ ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 … 表データ 解釈
  5. TSVファイル - 表形式のデータ交換⽤に⽤いられるテキストファイル - TSVファイルの⾏が表の⾏に相当 - 表の各項⽬の値をタブ記号(\t: 不可視⽂字)で区切る - 1⾏⽬には表の構造を⽰す項⽬名を並べることがある

    - TSVファイルの拡張⼦はtsv ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 ... TSVファイルの中⾝ ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 … 表データ 解釈
  6. CSV/TSVファイルの読み取り 例 df = pd.read_table( “data/SSDSE-E-2024.csv”, sep=‘,’, header=2, index_col=‘地域コード’ )

    ← 読み込むファイル ← 区切り⽂字はカンマ ← ⾒出しは2⾏⽬(数え始めはゼロ) ← 「地域コード」列をインデックスに pandas.read_table ファイルからデータフレームを読み込むメソッド
  7. データフレーム情報へのアクセス(1/2) # データフーレムが変数df に格納されていると仮定 pandas.DataFrame.head df.head() データフレームの先頭数⾏を返すメソッド # データフーレムが変数df に格納されていると仮定

    df.tail() データフレームの末尾数⾏を返すメソッド pandas.DataFrame.tail ← メソッドの引数に整数を与えるとその数だけ⾏を返す ← メソッドの引数に整数を与えるとその数だけ⾏を返す
  8. 絞り込み(2/3) 複数条件を指定する場合, AND条件は & ,OR条件は |(パイプ)でつなぐ (各条件を丸括弧で包むこと) # 総人口が700万人以上かつ都道府県名が「全国」でないレコードを抽出 df[(df.総人口

    >= 7000000) & (df.都道府県 != '全国')] # 合計特殊出生率が1.8以上もしくは1.1未満のレコードを抽出 df[(df.合計特殊出生率 >= 1.8) | (df.合計特殊出生率 < 1.1)]
  9. 絞り込み(3/3) # 総人口が700万人以上かつ都道府県名が「全国」でないレコードを抽出 # df[(df.総人口 >= 7000000) & (df.都道府県 !=

    '全国')] # 上のコードは以下のように書くことが可能 df.query(“総人口 >= 7000000 & 都道府県 != ‘全国’”) pandas.DataFrame.query queryメソッドを使うと絞り込みをすっきり書ける
  10. データフレームの保存(1/2) df.to_csv( “保存先のファイル名”, sep=‘区切り文字’, header=True/False (デフォルトはTrue), index=True/False (デフォルトはTrue) ) pandas.DataFrame.to_csv

    データフレームをCSV/TSVファイルに書き出す ↓⾒出し情報を書き出すか否か ↑インデックス情報を書き出すか
  11. データフレームの保存(2/2) df.query(‘総人口 >= 7000000’).to_csv( “data/big-prefecture.tsv”, sep=‘\t’, header=True, index=False ) pandas.DataFrame.to_csv

    データフレームをCSV/TSVファイルに書き出す ←TSVファイルで書き出す ←インデックス情報(地域コード) はナシで書き出す
  12. 今後の予定 38 回 実施⽇ トピック 1 04/14 ガイダンス 2 04/21

    pandas⼊⾨ 3 04/28 決定⽊からはじめる機械学習 4 05/12 クラスタリング1:k-means & 階層的クラスタリング 5 05/19 クラスタリング2:密度ベースクラスタリング 6 05/26 分類1:K近傍法 & 教師あり機械学習のお作法 7 06/02 分類2:サポートベクターマシン 8 06/09 分類3:ニューラルネットワーク⼊⾨