Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS App Runnerについてとこれから期待したいこと/About-AWS-App-Ru...
Search
hedgehog051
August 27, 2021
Programming
0
87
AWS App Runnerについてとこれから期待したいこと/About-AWS-App-Runner-and-what-to-expect-in-the-future
hedgehog051
August 27, 2021
Tweet
Share
More Decks by hedgehog051
See All by hedgehog051
AWS Generative AI CDK Constructsについて
hedgehog051
2
250
KnowledgeBasesとAgentsの紹介
hedgehog051
4
1.7k
BedrockUpdatesPost-GW Summary
hedgehog051
4
740
来てくれClaude 3! Agents for Amazon Bedrockのモデル比較或いはチューニングの話
hedgehog051
5
1.6k
Relic_Tech_Camp_GenerativeAI.pdf
hedgehog051
11
88k
concurrencyで爆速並列デプロイ
hedgehog051
1
1.8k
AWSにおけるデータ分析入門 / Introduction To Data Analytics In AWS
hedgehog051
0
220
また増えた!?AWSコンテナ関連サービスを10分でざっくり掴もう/Learn-about-AWS-0container-services-in-10-minutes
hedgehog051
0
99
Other Decks in Programming
See All in Programming
TypeScript Language Service Plugin で CSS Modules の開発体験を改善する
mizdra
PRO
3
2.4k
#QiitaBash TDDでAIに設計イメージを伝える
ryosukedtomita
2
1.6k
イベントソーシングとAIの親和性ー物語とLLMに理解できるデータ
tomohisa
1
160
UPDATEがシステムを複雑にする? イミュータブルデータモデルのすすめ
shimomura
0
170
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfold' relates to 'iterate'"
philipschwarz
PRO
0
130
PT AI без купюр
v0lka
0
190
"使いづらい" をリバースエンジニアリングする UI の読み解き方
rebase_engineering
0
110
rbs-traceを使ってWEARで型生成を試してみた After RubyKaigi 2025〜ZOZO、ファインディ、ピクシブ〜 / tried rbs-trace on WEAR
oyamakei
0
1k
Agent Rules as Domain Parser
yodakeisuke
1
330
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
130
try-catchを使わないエラーハンドリング!? PHPでResult型の考え方を取り入れてみよう
kajitack
3
290
Building an Application with TDD, DDD and Hexagonal Architecture - Isn't it a bit too much?
mufrid
0
370
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.3k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
Rails Girls Zürich Keynote
gr2m
94
13k
Building Adaptive Systems
keathley
41
2.6k
Facilitating Awesome Meetings
lara
54
6.4k
Why Our Code Smells
bkeepers
PRO
336
57k
KATA
mclloyd
29
14k
We Have a Design System, Now What?
morganepeng
52
7.6k
4 Signs Your Business is Dying
shpigford
183
22k
GraphQLとの向き合い方2022年版
quramy
46
14k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
" Q Q 3 V O O F S
ʹ ͭ ͍ͯ ͱ ͜ Ε ͔ Β ظ ͠ ͨ ͍ ͜ ͱ ۽ ా
ࣗݾհ
ࣗݾհ • ۽ాɹ ,BO,VNBEB • ݄ʹגࣜձࣾ3FMJDೖࣾ • ॴଐɿ1*ࣄۀຊ෦@γεςϜσϕϩοϓϝϯτࣄۀ෦@51'
• "84ׂͱ͖
"QQ3VOOFSͱ
Πϯϑϥߏஙෆཁͷ ϑϧϚωʔδυܕίϯςφΞϓϦ σϓϩΠαʔϏε
͜Ε·ͰͷΞϓϦ࣮ߦͷྺ࢙
"QQ3VOOFSͱ • ΦϯϓϨϛεͷ߹
"QQ3VOOFSͱ • "84&$ͷ߹
"QQ3VOOFSͱ • "84&$4PO&$ͷ߹
"QQ3VOOFSͱ • "84&$4PO'BSHBUFͷ߹
"QQ3VOOFSͱ • "84"QQ3VOOFSͷ߹
"QQ3VOOFS
"QQ3VOOFSͷಛ
"QQ3VOOFSͷಛ • छྨͷ4PVSDFλΠϓͰ࣮ߦՄೳ • ίϯςφΠϝʔδ &$31SJWBUF1VCMJD • 1VCMJD3FHJTUSZͷ߹ɺσϓϩΠτϦΨʔखಈͷΈ
• ιʔείʔυ 1ZUIPOPS/PEFKT
"QQ3VOOFSͷಛ • ΠϯελϯεαΠζͷΈ߹Θͤ • ετϨʔδ • (J#ͷΤϑΣϥϝϧετϨʔδΠϯελϯεຖ • ίϯςφΠϝʔδΛల։͢Δ༻్ؚΉ
"QQ3VOOFSͷಛ • σϓϩΠλΠϓ • खಈσϓϩΠ • ࣗಈσϓϩΠ • ίϯςφΠϝʔδ͔ιʔείʔυ͕ߋ৽͞ΕΔͱ
"QQ3VOOFS͕ࣗಈతʹ#VJMEͱ%FQMPZΛ࣮ߦ • #MVF(SFFO%FQMPZ • ϔϧενΣοΫ 5$1 • σϓϩΠ࣌ͷ)FBMUIDIFDLࣦഊ࣌ʹࣗಈϩʔϧόοΫ
"QQ3VOOFSͷಛ • ϩʔυόϥϯγϯάͱΦʔτεέʔϦϯά • ಉ࣮࣌ߦ • ˞֤ΠϯελϯεʹৼΓ͚Δಉ࣌ϦΫΤετ • ࠷খαΠζ
Ҏ্ • ࠷ݶ*EMFঢ়ଶͱ͢ΔΠϯελϯε • ࠷େαΠζ ҎԼ • εέʔϧՄೳͳΠϯελϯε
"QQ3VOOFSͷಛ • ಉ࣌ϦΫΤετ૯ • ಉ࣮࣌ߦɺ.JOJɺ.BY
"QQ3VOOFSͷಛ • ಉ࣌ϦΫΤετ૯ • ಉ࣮࣌ߦɺ.JOJɺ.BY
"QQ3VOOFSͷಛ • ՝ۚମܥ • *EMFঢ়ଶͷΠϯελϯεͷ߹ • 64%(#࣌ • "DUJWFঢ়ଶͷΠϯελϯεͷ߹
• 64%(#࣌ɹɹ64%W$16࣌ • #VJME • 64%#VJME࣌ؒ • ࣗಈσϓϩΠ • 64%ΞϓϦέʔγϣϯ݄
"QQ3VOOFSͷಛ • ϦΫΤετ૯ • W$16.FNPSZ(#ɺಉ࣮࣌ߦɺ.JOJɺ.BY • 64% (# *OTUBODF
.JOJNVN 64%࣌
"QQ3VOOFSͷಛ • ϦΫΤετ૯ • W$16.FNPSZ(#ɺಉ࣮࣌ߦɺ.JOJɺ.BY • 64% (# *OTUBODF
.JOJNVN 64%࣌ • W$16 *OTUBODF64%࣌ • 5PUBM 64%࣌
"QQ3VOOFSͷಛ • ϩάཧ • σϓϩΠϩά • ΞϓϦέʔγϣϯϩά • Πϕϯτϩά
• ϝτϦΫε • ϦΫΤετؔ࿈ • ϦΫΤετɺϨΠςϯγɺ&3303ίʔυ • Πϯελϯεؔ࿈ • ΞΫςΟϒΠϯελϯε
"QQ3VOOFSͷಛ • ΧελϜυϝΠϯ • "QQ3VOOFSʹΑΔΞϓϦέʔγϣϯσϓϩΠͰׂΓͯΒ ΕΔυϝΠϯҎ֎ͷಠࣗυϝΠϯΛؔ࿈͚Մೳ • ҉߸Խ •
"84ϚωʔδυΩʔ σϑΥϧτ PSΧελϚʔཧܕΩʔ • Ұ࣌ఀࢭػೳ • ఀࢭத՝ۚͳ͠
"QQ3VOOFSͷಛ • ͱ͍͑ɺ·ͩ·ͩ։ൃ్্ • ϓϥΠϕʔτ71/͕ະରԠͳҝɺͲ͏ͯ͠3%4Λ͍ͨ ͍߹3%4ΛύϒϦοΫʹஔ͘ඞཁ͕͋Δ • બΔΠϯελϯελΠϓͷબࢶ͕গͳ͍ •
4(ͳͲͷ੍ޚෆՄ • 8"'࿈ܞෆՄ • ΧφϦΞϦϦʔεෆՄ • ॾʑநԽ͞Ε͍ͯΔͷͰΧελϚΠζੑ͍ • %PDLFS$PNQPTFະରԠFUDʜ
ϩʔυϚοϓ • ։ൃϩʔυϚοϓ • ࣌ؒʹج͍ͮͨΞϓϦέʔγϣϯϩάϑΟϧλϦϯά • ϓϥΠϕʔτ71$ͱͷ௨৴ • 4PVSDFλʔήοτʹ$PEF$PNNJU(JU)VC&OUFSQSJTFɺ
%PDLFS)VCͳͲΛՃFUDʜ IUUQTHJUIVCDPNBXTBQQSVOOFSSPBENBQ
·ͱΊ
·ͱΊ • ؆୯ʹΞϓϦέʔγϣϯΛσϓϩΠग़དྷΔ͚Ͳສೳ͡Όͳ͍ • ཉ͍͠ػೳ*TTVFΛ্͛Δ্͔͕ͬͯΔ*TTVFʹ͍͍ͶΛԡͤ ༏ઌ্͕͕Δ͔͠Εͳ͍ɺΒ͍͠ ɹɹɹɹɹɹ͜Ε͔Βʹظ