Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語処理を支える技術 〜要素技術とPerlの活用〜
Search
hide_o_55
August 31, 2014
Technology
4
3.4k
自然言語処理を支える技術 〜要素技術とPerlの活用〜
hide_o_55
August 31, 2014
Tweet
Share
Other Decks in Technology
See All in Technology
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
120
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
480
退屈なことはDevinにやらせよう〜〜Devin APIを使ったVisual Regression Testの自動追加〜
kawamataryo
4
1.4k
Browser
recruitengineers
PRO
8
2.3k
実践AIガバナンス
asei
3
320
Kubernetes における cgroup v2 でのOut-Of-Memory 問題の解決
pfn
PRO
0
450
ChatGPTとPlantUML/Mermaidによるソフトウェア設計
gowhich501
1
100
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.2k
Bye-Bye Query Spaghetti: Write Queries You'll Actually Understand Using Pipelined SQL Syntax
tobiaslampertlotum
0
120
AIエージェントの活用に重要な「MCP (Model Context Protocol)」とは何か
masayamoriofficial
0
270
バッチ処理で悩むバックエンドエンジニアに捧げるAWS Glue入門
diggymo
3
110
2025年にHCP Vaultを学び直して見えた景色 / Lessons and New Perspectives from Relearning HCP Vault in 2025
aeonpeople
0
140
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Making Projects Easy
brettharned
117
6.4k
Embracing the Ebb and Flow
colly
87
4.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing for Performance
lara
610
69k
How GitHub (no longer) Works
holman
315
140k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Transcript
ࣗવݴޠॲཧΛࢧ͑Δٕज़ ʙཁૉٕज़ͱPerlͷ׆༻ʙ Hideaki Ohno
About me w)JEFBLJ0IOP w5XJUUFSIBUFOBOQNIJEF@P@ w(JU)VCIJEFP w1"64&)*%&",*0 w'BWPSJUF1SPHSBNJOH-BOHVBHF w$$ +BWB4DJSQU1FSM
None
Ͳ͏ΈͯNoderͰ͢ɻ ຊʹʢ͈́
Agenda •ࣗવݴޠॲཧͷ֓ཁ •ࣗવݴޠॲཧͷཁૉٕज़ •ΞϧΰϦζϜ •σʔλߏ •πʔϧ •ϥΠϒϥϦ
ఆରऀ • Perlʹ͍ͭͯCPANϞδϡʔϧΛ׆༻ͯ͠ɺΓ͍ͨ͜ͱΛ࣮ ݱͰ͖Δ • ࣗવݴޠॲཧʹ͍ͭͯڵຯ͋Δ͕ܦݧͳ͍
ࣗવݴޠॲཧ զʑ͕ීஈ͍ͬͯΔ ݴޠΛίϯϐϡʔλʹ ॲཧͤ͞Δٕज़
ࣗવݴޠॲཧ ͔ͳࣈม
ࣗવݴޠॲཧ ใݕࡧ
ࣗવݴޠॲཧ ػց༁
ࣗવݴޠॲཧ ใநग़
ࣗવݴޠॲཧ ࣗಈཁ
ࣗવݴޠॲཧ จষੜ
ࣗવݴޠॲཧ Իೝࣝ
ࣗવݴޠॲཧ จࣈೝࣝ
ࣗવݴޠॲཧ •ϧʔϧϕʔε •౷ܭతֶशϞσϧ
ϧʔϧϕʔε • ਓखͰϧʔϧΛఆٛͯ͠ॲཧ͢Δ • ʹΑͬͯݱࡏͰ౷ܭֶशϞσϧΑΓߴਫ਼ • ॴ • ਓखʹΑΔௐ͕Ͱ͖Δ •
ॴ • ϧʔϧͷϝϯςφϯείετ • ϧʔϧͷ࡞ʹઐ͕ࣝඞཁ • ྫ֎ͷଟ͍υϝΠϯͷద༻͕ۤख
౷ܭతֶशϞσϧ • ػցֶशʹΑΓϧʔϧΛಋ͖ग़͠ॲཧΛߦ͏ɻ • ॴ • ՃֶशʹΑΓ৽͍͠υϝΠϯͷద༻͕Մೳ • ॴ •
ύϥϝʔλͷௐ͕͍͠ • ֶशσʔλͷ࡞ίετ
ࣗવݴޠॲཧͷཁૉٕज़
ओʹςΩετղੳؔͷٕज़ Λհ
ܗଶૉղੳ
ܗଶૉղੳͱ •ࣗવݴޠจͷܗଶૉ(Morpheme)୯Ґʹׂ͠ɺࢺͳͲΛ༩͢Δ ॲཧ •ܗଶૉͱͦͷݴޠʹ͓͚Δ࠷খ୯Ґɻجຊతʹ୯ޠͩͱࢥͬͯྑ ͍ •ݱࡏɺར༻͞Ε͍ͯΔ࣮ͷଟ͘ࢺ͚ͩͰͳ͘ɺ׆༻ͷछྨɺ ݪܗɺಡΈͳͲͷ༩Λߦ͏Α͏ʹͳ͍ͬͯΔ •Ϟσϧ࣍ୈͰ୯ޠʹؔ࿈͢Δ༷ʑͳଐੑΛ༩Ͱ͖Δ •͜ͷॲཧΛߦ͏ϓϩάϥϜΛܗଶૉղੳث(Morphlogical Analyzer)ͱ͍͏
•Morphlogical Analyzer = Word Segmenter + POS Tagger + Lemmatizer + α
ܗଶૉղੳثͷΈ ܗଶૉղੳثͰར༻͞Ε͍ͯΔख๏(ίετ࠷খ๏)ͷ͓͓·͔ͳ Έ ! 1.୯ޠࣙॻΛ༻ҙ͢Δɻ୯ޠࣙॻʹ୯ޠͷੜىίετ(୯ޠͷग़ ݱ֬)ɺࢺͷใ͕֨ೲ͞Ε͍ͯΔɻ(ࣙॻʹ͍ͭͯޙड़) ! 2.୯ޠࣙॻΛར༻ͯ͠ɺೖྗจʹؚ·ΕΔ୯ޠީิΛྻڍ͢Δɻ
ܗଶૉղੳثͷΈ 3.ྻڍͨ͠୯ޠΛจ಄͔Βจ·Ͱฒͯɺ Έ߹Θͤͨߏ(Latticeߏ)Λ࡞͢Δɻ ࠷͔֬Β͍͠୯ޠ۠ΓͱࢺͷΈ߹ΘͤΛಘ͍ͨ
ܗଶૉղੳثͷΈ 4.͜͜ͰҎԼͷίετΛઃఆ͢Δɻ ୯ޠͷੜىίετ(୯ޠͷग़ݱ͕֬ߴ͍΄Ͳίετ) " Λ௨ Δίετ ࿈ίετ(ࢺͷྡ͕֬ߴ͍΄ͱίετ)ɹ" ลΛ௨Δίετ
ܗଶૉղੳثͷΈ 5.߹ܭίετ͕࠷খ͞ͳܦ࿏Λ୳ࡧ͢Δɻ ͔͠͠ ࣮ࡍͷॲཧͰΈ߹Θͤͷେ
ܗଶૉղੳثͷΈ ಈతܭը๏(DP)ͷग़൪
ܗଶૉղੳثͷΈ ViterbiΞϧΰϦζϜ •ಈతܭը๏ͷҰछ •ӅΕϚϧίϑϞσϧ(HMM)ʹجͮ͘ •؍ଌ͞ΕͨࣄܥྻΛग़ྗͨ͠Մೳੑ͕࠷ߴ ͍ঢ়ଶྻΛਪఆ͢Δ
ܗଶૉղੳثͷΈ 6.ViterbiΞϧΰϦζϜͰ୳ࡧͨ͠࠷ίετͷ͍୯ޠ ྻΛग़ྗ͢Δɻ ! ࣮ࡍ͜ΕʹՃ͑ͯɺࣙॻʹଘࡏ͠ͳ͍୯ޠ(ະޠ)Ͱ ͋ͬͯɺׂҐஔΛਪఆͰ͖ΔΑ͏ͳ͕ͳ͞Ε͍ͯ Δɻ(จࣈछʹجͮ͘ώϡʔϦεςΟοΫॲཧͳͲ)
ܗଶૉղੳث •Mecab •KyTEA •JUMAN •KAKASI ܗଶૉղੳثͷྫ
Mecab •͖݅֬(CRF)ʹجͮ͘ղੳ •ࣙॻʹμϒϧྻ(ޙड़)Λ༻ •Darts(Double-Array TRie System) •Ϣʔβࣙॻɺ෦ղੳػೳͰڥքఆΛΧελϚΠζՄೳ •PerlόΠϯσΟϯά(SWIGͰੜ)ଐ •Text::Mecab
ڥքఆͷิਖ਼͕ඞཁͳࣄྫ •ʮͳͷʯ •ॿࢺͳͲͱͯ͠ѻΘΕͯ͠·͏ •ຐ๏গঁΛݻ༗໊ࢺͱͯ͠ѻ͍͍ͨ •ʮϞʔχϯά່ɻʯɺʮ౻Ԭ߂ɺʯ •۟ಡͰׂ͞Εͯ͠·͏ ҰൠจίʔύεʹΑΔֶशͰѻ͍ͮΒ͍ͷ
JUMAN •1992ެ։ •ίετਓखͰ༩ •PerlόΠϯσΟϯά(SWIGͰੜ)ଐ
KyTea •จࣈ୯ҐͰͷׂҐஔɺλάਪఆ •SVMϩδεςΟοΫճؼʹΑΔਪఆ •෦ΞϊςʔγϣϯʹΑΔՃֶश •Text::KyTea
KAKASI •ࣈ"͔ͳ(ϩʔϚࣈ)มϓϩάϥϜ •୯ޠׂʹରԠ •Text::KAKASI
ࣙॻͰ༻͞ΕΔσʔλߏ
Trie • ॱং͖ߏͷҰछ • ߏ্ͷϊʔυͷҐஔͱΩʔ͕ରԠ͍ͯ͠Δ • ऴ·Ͱذͷͳ͍ϥϕϧΛTAILྻʹऩΊΔMinimal Prefix Trieɺ ذͷͳ͍ϊʔυͷϥϕϧΛ1ͭͷϊʔυ·ͱΊΔύτϦγΞTrieͳͲͷѥछ
͋Δ
Trieͷಛ •Ωʔͷݕࡧ͕ߴɻ͞ m ͷΩʔݕࡧ࠷ѱ Ͱ O(m) •ڞ௨͢Δ಄͕ࣙ·ͱΊΒΕΔͷѹॖޮՌ͕͋ Δ •ڞ௨͢Δ಄ࣙΛ࣋ͭΩʔͷྻڍ͕༰қ
TrieΛදݱ͢Δσʔλߏ
ιʔτࡁΈྻ •Trieͷ֤ϊʔυͷࢠϊʔυΛϥϕϧͰιʔτ •୳ࡧ࣌ࢠϊʔυΛೋ୳ࡧ •ݕࡧͷܭࢉྔO(log n)
μϒϧྻ • BaseͱCheckͷ2ͭͷྻͰTrieͷϊʔυؒͷભҠΛදݱɻ • αΠζ͕ίϯύΫτͰඇৗʹߴʹݕࡧͰ͖Δɻ • ݕࡧͷܭࢉྔO(1)ɻ࣮ࡍʹΩʔͷ͞ʹґଘɻ • Perl͔ΒText::Darts͕ར༻Ͱ͖Δ
LOUDS • TrieͷߏΛϏοτྻͰදݱ • ؆ܿϏοτϕΫτϧΛར༻͢Δ͜ͱͰαΠζΛѹॖͭͭ͠ߴͳΞΫηε͕Մೳ • ؆ܿϏοτϕΫτϧҎԼͷૢ࡞Λఏڙ͢Δ • access(i): ϏοτϕΫτϧͷi൪ͷΛฦ͢
• rank(i): ઌ಄͔Βi൪·Ͱͷ1(·ͨ0)ͷΛฦ͢ • select(i): i൪ʹग़ݱ͢Δ1(·ͨ0)ͷҐஔΛฦ͢ • ҰఆͷϒϩοΫຖʹ1ͷΛอ࣋ͨ͠rankࣙॻΛར༻͢Δ͜ͱͰrank(i) ఆ࣌ؒͰॲཧՄೳ • select(i)rankࣙॻͷೋ୳ࡧͰO(log n)ͰॲཧՄೳ • Perl͔ΒText::Tx(tx-trie), Text::Ux(ux-trie)ɺmarisa- trie(SWIG)͕ར༻Մೳ
Γड͚ղੳ
Γड͚ղੳͱ •֤୯ޠɾจઅؒͷΓड͚ߏΛൃݟ͢Δ •جຊతʹܗଶૉղੳثͷग़ྗΛೖྗͱ͢Δ •͜ͷॲཧΛߦ͏ϓϩάϥϜΛΓड͚ղੳثͱ ͍͏
Γड͚ղੳͷΈ •Shift-reduce •ࠨ͔Βӈᩦཉతʹղੳ •ߴɺগ͠ਫ਼͕͍ •શҬ •จશମͷΓड͚Λ࠷దԽ •ਫ਼͕গ͠ߴ͘ɺεϐʔυ͕গ͠མͪΔ •νϟϯΫಉఆͷஈ֊ద༻ •୯ޠΛ۟ʹνϟϯΩϯά •Λൃݟ
ɹͷ܁Γฦ͠
Shift-Reduce • ࠨ͔Βӈ୯ޠΛ̍ݸͣͭॲཧ • QueueͱStackΛར༻ͯ͠ॲཧ • Queue : ະॲཧͷ୯ޠΛ֨ೲ •
Stack : ॲཧதͷ୯ޠΛ֨ೲ • ֤࣌Ͱ 1 ͭͷಈ࡞Λબ • shift: 1 ୯ޠΛΩϡʔ͔ΒελοΫҠಈ • reduce ࠨ : ελοΫͷ̍୯ޠ̎୯ޠͷ • reduce ӈ : ελοΫͷ̍୯ޠ̎୯ޠͷ • ྨثΛͬͯͲͷಈ࡞ΛऔΔ͔Λֶश
શҬ •୯ޠΛͱͨ͠༗άϥϑΛ࡞Δ •άϥϑͷล͕Γड͚ •ػցֶशͨ͠σʔλΛݩʹ֤ลʹείΞΛ༩ •είΞ͕࠷େͱͳΔ͕Γड͚ߏΛද͢ߏ จͱͳΔ
νϟϯΫಉఆͷஈ֊ద༻ •จΛνϟϯΫʹׂɺΛӈͷ୯ޠʹ͢Δ •νϟϯΫׂ͕Ͱ͖ͳ͘ͳͬͨ࣌Ͱߏจ͕
Γड͚ղੳث •CaboCha •KNP •J.DepP
CaboCha •SVMʹجͮ͘ղੳ •ࣙॻʹμϒϧྻΛ༻ •ݻ༗දݱղੳ •ݻ༗໊ࢺ(৫ɺਓ໊ɺ໊ͳͲ)ɺදݱɺ࣌ؒදݱ ͳͲΛఆ •PerlόΠϯσΟϯάଐ(SWIG)
KNP •2003ʹެ։͞ΕͨΓड͚ղੳ/֨ղੳث •JUMANͷग़ྗΛೖྗͱ͢Δ •PerlόΠϯσΟϯάଐ(SWIG)
J.DepP •2009ʹެ։͞ΕͨຊޠΓड͚ղੳث •લड़ͷख๏ΛؚΊෳͷղੳख๏Λαϙʔτ •SVM, MaxEntͳͲෳͷֶशख๏Λαϙʔτ •OpalʹΑΔΦϯϥΠϯֶश •PerlόΠϯσΟϯάଐ(SWIG)
ҙຯղੳ-֨ղੳ • ֨ߏɿจͷҙຯߏΛ ಈࢺ-ਂ֨-໊ࢺ ͱ͍͏ؔͷू߹ͱͯ͠ั͑ͨͷ • ද֨ɿΨ֨ɼϮ֨ɼχ֨ • ਂ֨ɿಈ࡞ओ֨, ର֨,
ॴ֨, ࣌ؒ֨ͳͲ • KNP
ҙຯղੳ-ड़ޠ߲ߏղੳ •จষதͷ֤ड़ޠͷʮ߲ʯͱͳΔ໊ࢺ۟ͳͲΛ ͯΔ •ड़ޠͷಈ࡞ओମͱͳΔ໊ࢺͲΕ͔ •SynCha •Perl
ݴޠϞσϧ •ࣗવݴޠΒ͠͞Λ֬Ͱද͢Ϟσϧ •͔ͳࣈมػց༁ͳͲͰར༻͞ΕΔ •Α͘ར༻͞ΕΔͷ͕ N-gramݴޠϞσϧ
N-gramݴޠϞσϧ •Nݸͷ୯ޠྻ͕ग़ݱ͢Δ֬Λ֨ೲͨ͠Ϟσϧ •0-gram: ୯ޠͷੜى֬֬ •1-gram: ୯ޠͷग़ݱ֬ •2-gram: W_i-1ͷޙΖʹWi͕ग़ݱ͢Δ͖݅֬ •n-gram: n
୯ޠͱ n-1 ୯ޠ͔ΒͳΔจࣈྻͷ֬Λར༻ •wi−n+1…wi−1ͷޙΖʹW_i͕ग़ݱ͢Δ͖݅֬
N-gramݴޠϞσϧͷ՝ ݴޠϞσϧʹଘࡏ͠ͳ͍୯ޠ(ະޠ)͕ग़ݱ͢Δͱ֬ 0Ͱ͋ΔͨΊɺจͷείΞΛదʹࢉग़Ͱ͖ͳ͍ ! " ະޠΛؚΉN-gramʹԿΒ͔ͷ֬ΛׂΓͯΔ: εϜʔδϯά
εϜʔδϯά •ՃࢉεϜʔδϯά •શͯͷ֬ʹҰఆͷΛՃࢉͯ͠ɺ0ʹͳΒͳ ͍Α͏ʹ͢Δɻ •ਫ਼͕ѱ͍ •ઢܗิ๏ •N-1, N-2 … 1gramͱ͍ͬͨ࣍N-gramͷ
֬Λར༻ͯ͠N-gramͷ֬Λਪఆ͢Δ
εϜʔδϯά •Back-off •ֶशσʔλͰग़ݱ͢Δͱ͖άουνϡʔϦ ϯάͷਪఆΛͬͯɺग़ݱ͠ͳ͍ͱ͖ (1-શͯͷग़ݱ͢Δ߹ͷਪఆͷ)Λग़ݱ ͠ͳ͍୯ޠʹۉʹ֬Λ͢Δ
εϜʔδϯά •Kneeser-NeyεϜʔδϯά •ߴ •࣍N-gramͱલͷ୯ޠͷछྨΛ༻͍Δ •Modified Kneeser-NeyεϜʔδϯάɺ Interpolated Kneeser-NeyεϜʔδϯάͳͲੜ͋ Γ
ࣗવݴޠॲཧͰཱͭ PerlϞδϡʔϧ
Regexp::Assemble • ෳͷਖ਼نදݱʹϚον͢Δߴͳਖ਼نදݱΛੜ • ͲͷύλʔϯʹϚον͔ͨࣝ͠ผՄೳ
Parse::RecDescent •BNF-likeͳจ๏ఆ͔ٛΒ࠶ؼԼ߱ύʔαʔΛ ੜ
Data::Iterator::SlidingWindo w •࡞ •Slinding Window ΞϧΰϦζϜʹΑͬͯίϨ ΫγϣϯΛάϧʔϐϯάͯ͠ɺΠςϨʔλͰऔ Γग़͢͜ͱ͕Ͱ͖Δ •୯ޠͷN-GramੜͳͲʹར༻Ͱ͖Δ
Algorithm::NaiveBayes •Naive Bayes๏ʹΑΔྨث •গͳ͍܇࿅σʔλͰྨͷͨΊͷύϥϝʔλ ΛݟੵΔ͜ͱ͕Ͱ͖Δ
Algorithm::SVM •libsvmͷPerlόΠϯσΟϯά •libsvn • SVM(Support Vector Machine)ʹجͮ ͘ઢܗྨثͷ࣮
Algorithm::LibLinear •liblinearͷPerlόΠϯσΟϯά •liblinear •ઢܗྨث •libsvnΑΓߴ
Algorithm::AdaBoost •AdaBoost(Adaptive Boosting)ΞϧΰϦζ ϜͷPerl-XS࣮
Algorithm::AdaGrad •࡞ •ΦϯϥΠϯֶशΞϧΰϦζϜ AdaGrad(Adaptive Gradient)ͷPerl-XS ࣮
Algorithm::HyperLogLog •࡞ •ू߹ͷΧʔσΟφϦςΟΛਪఆ͢Δ HyperLogLog ΞϧΰϦζϜͷPerl-XS࣮ •ޡࠩΛؚΉ͕লϝϞϦͰू߹ͷΧʔσΟφϦςΟ ΛಘΔ͜ͱ͕Ͱ͖Δ
Algorithm::LBFGS •L-BFGS๏ͷ࣮ •লϝϞϦͰ४χϡʔτϯ๏ •ؔͷޯ͕0ʹͳΔͱ͍͏ҙຯͰͷؔͷෆ ಈΛݟ͚ͭΔ
WWW::Mechanize •ਓ͕ؒϒϥβͰߦ͏ૢ࡞ΛΤϛϡϨʔτ •Web্ͷใऩूʹศར
Web::Query •jQueryͬΆ͍ײ͡ͰεΫϨΠϐϯάͰ͖Δ
ࣗવݴޠॲཧʹ͓͚Δ Perlͷׂ •ॊೈͳςΩετॲཧೳྗΛ׆͔ͨ͠લॲཧɾޙॲཧ •֤छπʔϧͷೖྗɾग़ྗςΩετͷϑΥʔϚοτมͳͲ •εΫϨΠϐϯάʹΑΔݴޠϦιʔεͷऩू •ϓϩτλΠϐϯά •ࣗવݴޠॲཧπʔϧͷଟ͘C++ •PerlͱC++είʔϓͷѻ͍͕ࣅ͍ͯΔͷͰɺείʔϓΨʔυͳ ͲͷΠσΟΦϜ͕ͦͷ··Ҡ২Ͱ͖Δ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠