Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報系システムで生き残る
Search
A.K.A Tony Morris
April 08, 2016
Programming
0
160
情報系システムで生き残る
雑兵MeetUp #4 エイプリルフーLT 向けの資料です。
A.K.A Tony Morris
April 08, 2016
Tweet
Share
More Decks by A.K.A Tony Morris
See All by A.K.A Tony Morris
The Best Moment Of SKE48 2017
hiratatom
0
120
SKE48とセットリスト
hiratatom
0
140
ふくらはぎ。
hiratatom
0
140
COBOLミートアップ #1
hiratatom
0
120
トニーモリスの総選挙参戦記
hiratatom
0
360
んんんまなつぅ
hiratatom
0
1.5k
ミニマリストのためのAlpine
hiratatom
2
6.8k
Tony Morris Meet Up
hiratatom
0
320
Other Decks in Programming
See All in Programming
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
170
AgentCoreとHuman in the Loop
har1101
5
160
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
760
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
240
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3.4k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
110
CSC307 Lecture 04
javiergs
PRO
0
640
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
5.4k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
640
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
810
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Unsuck your backbone
ammeep
671
58k
Why Our Code Smells
bkeepers
PRO
340
58k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
230
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
180
[SF Ruby Conf 2025] Rails X
palkan
0
710
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
240
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
240
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
410
Transcript
情報系システムで生き残る
自己紹介 • トニーモリスはビジネスネーム • SIer勤務 • DWH、Business Intelligenceの仕事がメイン • 流行の言葉で言うと、Big
DataとかAnalitics • 職種はプロジェクトマネージャーまたはアーキテクト(プロジェクトによる)
情報系システムとは • 企業に蓄積されているデータを用いて企業経営に役立つ情報を提供する システム • 対義語は基幹系システム • ワードとしては、Data Warehouse、Business Intelligence
Analytics、Big Data、Cognitive Computing など • 最近はSystem Of Engagementと呼んだりする • 対義語はSystem Of Record • 今日は伝統的な情報系システムについてお話します • 機械学習、自然言語処理、統計学等の最新技術についてはお話しません • 情報系システムにアサインされてしまったら、要件定義・設計はどうすれば よいか、についてお話します
DWHで使用するデータモデルはスタースキーマが基本 4 スタースキーマであれば、様々な分析に対応しやすい 分析に関し、ある意味を持つデータの塊を「サブジェクト」と呼ぶ。1スタースキーマ=1サブジェクトで構成する バッチのカスタムアプリまたはETLツールを用い、ソースデータを下記のようなテーブルに格納しておくことが必要 POS 店舗CD
レジ番号 販売日付時刻 取引番号 商品(JAN) 顧客CD 数量 金額 店舗 店舗CD 市町村 都道府県 タイプ レジ レジ番号 フロア 販売日付時刻 販売日付時刻 時間帯 日 月 年 曜日 商品 商品(JAN) 部門 セグメント 顧客 顧客CD 性別 年代 ランク 市町村別・部門別・曜日別売上推移 顧客ランク・商品別・月別売上数量ランキング (例) ファクトと呼ぶ ディメンジョン と呼ぶ
スタースキーマをどうやって設計するか 5 小売業における売上分析を例にとって説明する POS 店舗CD レジ番号 販売日付時刻 取引番号 JAN
顧客CD 数量 金額 ①サブジェクト(この場合は「売上」) に対応するデータを特定する ②その内容をファクトテ ーブルとして定義する ③分析軸と集計 項目を特定する ③分析軸にディメ ンジョンを追加する ※顧客IDは重要な分 析軸のため 各社ポ イントカードに力を入れ る 集計項 目 分析軸 カウントして顧客数 【店舗】 ①店舗CD<市町村<都道府県 ②店舗CD<タイプ(大型、小型等) 【レジ番号】 ①レジ番号<フロア 【販売日付時刻】 ①販売日付時刻<年月日<月<年 ②販売日付時刻<時間帯 ②販売日付時刻<曜日 【商品】 ①JAN<部門 ②JAN<商品セグメント 【顧客】 ①顧客CD<性別 ②顧客CD<年代 ②顧客CD<ランク(過去の売上)
• OLTPシステムより難易度は低いです • 安心して取り組んでください