Upgrade to Pro — share decks privately, control downloads, hide ads and more …

機械学習でヒトの行動を変える

Hiromu Yakura
November 01, 2024

 機械学習でヒトの行動を変える

HCIという領域の関心の一つに,コンピュータの新たな使い方を生み出すという点がある.この観点から,機械学習技術を用いて特にユーザの行動変容を生み出すというユースケースを紹介し,求められるインタラクションデザインについて議論する.また,機械学習技術が意図せずユーザの行動を変えている事例にも触れながら,ユーザや社会との関係の中で機械学習技術を捉えることを試みる.

Hiromu Yakura

November 01, 2024
Tweet

More Decks by Hiromu Yakura

Other Decks in Research

Transcript

  1.  w ໼૔େເʢ΍͘ΒͻΖΉʣ w (PPHMFٴͼ.JDSPTPGU3FTFBSDI1I%'FMMPX w +45"$59 ະདྷࣾձ૑଄ࣄۀ౳ͰσβΠϯࢧԉ͔Β ൃୡো͕͍ࣇࢧԉ·ͰػցֶशͷԠ༻Λ֦͛Δݚڀʹैࣄ w

    ઌ݄ΑΓ+45͖͕͚͞ʮࣾձมֵج൫ʯʹͯ ʮػցֶश࣌୅ͷࣾձม༰Λཧղ͢Δ ج൫Ξϓϩʔνͷ૑ग़ʯͱ͍͏՝୊Λ։࢝ ࣗݾ঺հ
  2. ݚڀϓϩδΣΫτྫ  w $07*% ԼͷΞΠυϧͷѲखձͷมԽ͔Β ςϨίϛϡχέʔγϣϯͷड༰ͱݶքΛٞ࿦ Yakura,. ACM CHI 2021.

    workplace communication [1,31] ef f iciency connectedness intimate relationships [24,50] Idol groups ? The image is taken from a YouTube video only for presentation purpose. https://www.youtube.com/watch?v=6yOxmVoAE14 The photos are taken from Wikimedia Commons and Flickr under the CC-BY-SA 2.0 license. https://w.wiki/3AF4 https://www. f lickr.com/photos/kanesue/47545700921/
  3. ݚڀͷڵຯ  ػցֶशͷ׆༻ͷͨΊͷ ΠϯλϥΫγϣϯݚڀ ػցֶशٕज़ͷݚڀ Ϣʔβ ϦεΫ΍ ݶք ࣾձͰͷ ड༰

    w ΋ͱ΋ͱ͸"EWFSTBSJBM&YBNQMFͳͲػցֶशηΩϡϦςΟͷྖҬΛݚڀ w ಺ࡏతͳݶքΛલఏʹɺࣾձͰػցֶशͷԠ༻৔໘Λ޿͛Δʹ͸ʁͱ͍͏ ؍఺͔ΒػցֶशͷϥετϫϯϚΠϧ໰୊Λղ͘ΠϯλϥΫγϣϯΛݕ౼ """* *+$"*
  4. .JOEMFTT"UUSBDUPSػցֶशͷِཅੑΛ ౿·͑ͨௌ֮ϑΟʔυόοΫσβΠϯ 7 Riku Arakawa*1, Hiromu Yakura*2,3 *: equal contribution

    1 : Carnegie Mellon University 2: Max-Planck Institute for Human Development (Previously: University of Tsukuba) 3: National Institute of Advanced Industrial Science and Technology (AIST)
  5. ػցֶशٕज़ͷ׆༻Ͱͦ͏ͨ͠৔໘ΛݮΒ͢͜ͱ͸Ͱ͖ͳ͍͔ʁ S. Whittaker Rethinking Video as a Technology for Interpersonal

    Communications: Theory and Design Implications. Int. J. Hum. Comput. 1995. C. Coombs. Will COVID-19 Be the Tipping Point for the Intelligent Automation of Work? A Review of the Debate and Implications for Research. Int. J. Inf. Manage. 2020. A. Kuzminykh, et al. Classification of Functional Attention in Video Meetings. ACM CHI 2020. R. S. Oeppen, et al. Human Factors Recognition at Virtual Meetings and Video Conferencing: How to Get the Best Performance From Yourself and Others. Br. J. Oral Maxillofac. Surg. 2020. w ಛʹ$07*%Ҏ߱ɺΦϯϥΠϯ΍ ಈըϕʔεͷίϛϡχέʔγϣϯͷ ػձ͸֨ஈʹ૿͍͑ͯΔ<8IJUUBLFS>  w ͔͠͠ɺͦ͏͍ͬͨ৔໘Ͱਓؒ͸ ༰қʹूதΛࣦ͍͕ͪ<,J[NJOZLI > w εϚϗΛ৮ͬͨΓɺ8FCϒϥ΢δϯάΛͨ͠Γͱ͍͏ӨڹͰ ΦϯϥΠϯձٞͷੜ࢈ੑ͕௿͘ͳ͍ͬͯΔ<0QQFO > 8
  6. w إը૾͔Β஫ҙ͕ࢄອʹͳͬͨॠؒΛݕग़͢ΔػցֶशϞσϧ͸ଘࡏ w ΦϯϥΠϯतۀͰूத͍ͯ͠ͳֶ͍ੜʹΞϥʔτ͢Δ͜ͱ͸Մೳ<5IPNBT > w ͔͠͠ɺޡݕ஌ͰΞϥʔτͯ͠͠·͏ͱٯʹूதΛଛͳ͏͚ͩͰͳ͘ γεςϜ΁ͷෆ৴ײΛট͘͜ͱʹͳΔ<%JFUWPSTU > 

    w ͔͠΋ɺ ҙཉͷ௿͍ͱ͖ʹʮूத͍ͯͩ͘͠͞ʯͳͲͱ͚ͩ Ξϥʔτͯ͠΋ɺͦΕͰूத͕໭Δͱ͸ݶΒͳ͍ w ਓؒͷೝ஌ϓϩηεʹґڌͨ͠ϑΟʔυόοΫσβΠϯΛ͠ͳ͍ͱ ػցֶशٕज़͚ͩͰߦಈม༰Λى͜͢͜ͱ͸೉͍͠ A. Gupta, et al. DAiSEE: Towards User Engagement Recognition in the Wild. arXiv, 2016. C. Thomas, et al. Predicting Student Engagement in Classrooms Using Facial Behavioral Cues ACM CHI MIE Workshop 2017. B. J. Dietvorst, et al. Algorithm Aversion: People Erroneously Avoid Algorithms After Seeing Them Err. J. Exp. Psychol. 2015. [Gupta+ '16] 9
  7. .JOEMFTTDPNQVUJOH<"EBNT > A. T. Adams et al. Mindless Computing: Designing

    Technologies to Subtly Influence Behavior. UbiComp 2015. U. Lyngs et al. Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools. ACM CHI 2019. D. Kahneman. Thinking, Fast and Slow. 2011. ΧʔωϚϯͷೋॏաఔཧ࿦ʹجͮ͘σβΠϯ <,BIOFNBO -ZOHT >  • γεςϜ௚ײతͳ଎͍ࢥߟ • γεςϜ࿦ཧతͳ஗͍ࢥߟ γεςϜΛ௨ͯ͠ߦಈม༰ΛੜΈग़͢ʹ͸ Ϣʔβͷಈػ͚͕ͮඞཁʹͳͬͯ͘Δ ˠਓؒͷੜಘతͳಛੑΛ׆༻͢Δ͜ͱͰ ɹϢʔβͷ࿦ཧతͳࢥߟʹґଘͤͣʹ ɹߦಈม༰ΛੜΈग़͢Ξϓϩʔν 12
  8. $BU"MZTUେن໛ੜ੒ϞσϧΛ༻͍ͨ ஌తλεΫͷઌԆ͹͠๷ࢭΠϯλϥΫγϣϯ Riku Arakawa*1, Hiromu Yakura*2,3, Masataka Goto3 *: equal

    contribution 1 : Carnegie Mellon University 2: Max-Planck Institute for Human Development (Previously: University of Tsukuba) 3: National Institute of Advanced Industrial Science and Technology (AIST) 20
  9. 21 S. Noy, et al. Experimental evidence on the productivity

    effects of generative artificial intelligence. Science 2023. https://www.technologyreview.com/2023/07/13/1076199/ --.͸஌తੜ࢈ੑΛ ߴΊΔ͔
  10. Ծઆ--. ͷଘࡏ͸࡞ۀͷʮઌԆ͹͠บʯղফʹ໾ཱͭ Ծఆ׬ᘳͰ͸ͳ͍ੜ੒݁ՌͰ͋ͬͯ΋ Ϣʔβͷ஫ҙΛλεΫʹҾ͖໭͢ͷʹ͸࢖͑Δ طଘख๏ ਐḿͷՄࢹԽʹΑΔ ಈػ͚ͮ<-JV > αΠτϒϩοΧʔ <,PWBDT

    > ఏҊख๏ G. Kovacs, et al. Rotating Online Behavior Change Interventions Increases Effectiveness But Also Increases Attrition. ACM CSCW 2018. Y. Liu, et al. Supporting Task Resumption Using Visual Feedback. ACM CSCW 2014. --. Λ༻͍ͨհೖ 23
  11. 25

  12. --.͕தஅͨ͠࡞ۀͷଓ͖ͷΞΠσΞΛఏࣔ͢Δ͜ͱͰ w NPUJWBUJPO࡞ۀͷ࠶։΁ͷಈػ͚ͮΛߦ͏ w BCJMJUZ࡞ۀͷ࠶։΁ͷೝ஌తϋʔυϧΛԼ͛Δ R. E. Petty, et al.

    The Elaboration Likelihood Model of Persuasion. Adv. Exp. Soc. Psychol. 1986. B. J. Fogg. A Behavior Model for Persuasive Design. ACM Persuasive 2009. &MBCPSBUJPOMJLFMJIPPENPEFM &-. <1FUUZ >  w ߦಈม༰ΛੜΈग़͢Ҽࢠͱͯ͠ NPUJWBUJPOͱBCJMJUZͷ྆ํ͕ඞཁͱࢦఠ <'PHH> $BU"MZTUհೖ 29
  13. w *HOPSBODFSBUF௨஌͕ແࢹ͞Εׂͨ߹ w *OUFSFTUSFUSJFWBMUJNF௨஌͔Β࡞ۀ࠶։·Ͱͷॴཁ࣌ؒ w 1SPHSFTTBGUFSSFTVNQUJPO࠶։͔ΒҰఆ࣌ؒͷ࡞ۀྔʢจࣈ਺౳ʣ w 5PUBMUJNF༩͑ΒΕͨλεΫશମͷॴཁ࣌ؒ w 4VCKFDUJWFRVBMJUZΫϥ΢υϫʔΧʹΑΔ੒Ռ෺΁ͷΫΦϦςΟධՁ

    w $PHOJUJWFMPBE/"4"5-9 Ͱܭଌ͞Εͨೝ஌ෛՙ w 4ZTUFNVTBCJMJUZ464 Ͱܭଌ͞ΕͨϢʔβϏϦςΟධՁ ? ? શମͷॴཁ࣌ؒͱୈࡾऀͷΫΦϦςΟධՁ͸͕ࠩͳ͔ͬͨ΋ͷͷ $BU"MZTU͸શମతʹ༗ҙͳޮՌΛࣔͨ͠ Ϣʔβ࣮ݧࢦඪٴͼ݁Ռ จॻࣥච εϥΠυ࡞੒ 34
  14. w ߦಈʹ༩͑ͨӨڹ w "*ͷਫ਼౓ʹ͍ͭͯͷײ૝ w $BU"MZTUͷ໾ׂ w 3FNJOEFS*EFBUPS1FFS w վળͷ༨஍

    ΠϯλϏϡʔ݁Ռ ࢖༻ঢ়گ w ೔ؒͷؒͰ࢖༻ස౓ʹࠩ͸ݟΒΕͣ த௕ظతͳޮՌ΍ϢʔβϏϦςΟΛࣔࠦ ৄࡉ͸࿦จΛࢀর͍ͩ͘͞ʂ Ϣʔβ࣮ݧ௕ظతͳ࢖༻࣮ݧ 36
  15. • $IBU(15 ͸ͳ͔ͥ EFMWF ͱ͍͏ ୯ޠΛ࢖͍͕ͪͱ͍͏ݱ৅͕໌Β͔ʹ • ଞʹ΋ $IBU(15 ʹಛ௃తͳ୯ޠ͕

    ൃݟ͞ΕɺͦΕΒͷՊֶ࿦จͰͷ ग़ݱස౓ͷٸ૿΋ࢦఠ͞Ε͍ͯΔ $IBU(15 ͷ EFMWF όΠΞε 42 W. Liang, et al. Mapping the Increasing Use of LLMs in Scientific Papers. Proc. CoLM (2024). https://pshapira.net/2024/03/31/delving-into-delve/
  16. ࣗ෼Ͱ΋ৼΓฦͬͯΈΔͱ • ࣗ਎΋Α͘ $IBU(15 ʹӳޠϝʔϧͷจষͳͲΛఴ࡟ͯ͠΋Β͏ • ͦͯ͠ɺ$IBU(15 Λ࢖͍ͬͯͳ͍ͱ͖ʹ΋ EFMWF ͱ͍͏୯ޠΛ࢖͏บ͕

    ఻છ͍ͯ͠Δؾ͕͢Δ ࣮ࡍʹ$IBU(15͕զʑͷίϛϡχέʔγϣϯʹ ͲΜͳมԽΛ΋ͨΒ͍ͯ͠Δͷ͔Λݕূ 43
  17. • ੈքͷֶज़ػؔͷ :PV5VCF νϟϯωϧ͔Β ෼Ҏ্ͷಈըສ݅Λऩू͠ॻ͖ى͜͠ ◦ ӳޠ฼ޠ࿩ऀΑΓୈೋݴޠ࿩ऀͷ΄͏͕ ӨڹΛड͚ΔͷͰ͸ͳ͍͔ͱ͍͏Ծఆ ◦ ΞΧσϛΞ͸͢Ͱʹࣥච౳Ͱ$IBU(15Λ

    େن໛ʹར༻͍ͯ͠Δ͜ͱ͕໌Β͔ ◦ ௕࣌ؒͷϓϨθϯ౳Λ͢΂ͯ$IBU(15Ͱ ݪߘ࡞੒͢ΔՄೳੑ͸௿͘ɺ ൃݴ͸TQPOUBOFPVTͳ಺༰ͱΈͳͤΔ Active institutions on ROR (n=20,662) Institutions with a channel identified (n=16,667) Institution with no channel identified (n=3,995) Videos from the channels (n=2,958,103) Videos with a English title (n=1,613,839) Videos with a non-English title (n=1,344,264) Videos longer than 20 minutes (n=364,916) Videos shorter than 20 minutes (n=1,248,913) Global institutions Videos shorter than 99 percentile (n=361,297) Videos longer than 99 percentile (n=3,619) σʔλऩू 44
  18. 45

  19. ώτͱ"*ͷ૬ޓతͳߦಈม༰ͷՄೳੑ  "*ʹΑΔ ߦಈม༰  όΠΞε͞Εͨ σʔλͷ஝ੵ  ࣍ੈ୅Ϟσϧͷ ৽σʔλͰͷֶश

     ࣾձ΁ͷ Өڹͷྦྷੵ 👩 🤖 📝 ݴޠදݱ ௌऔߦಈ طଘͷ σʔληοτ ࠓޙͷ σʔληοτ ︙ 📝 📝🤖 🎧 🎧🤖 ︙ 📝🤖 🎧🤖 🤖 🤖 🤖 ✨ ✨ ✨ ︙ 🤖 🤖 🤖 ✨ ✨ ✨ ︙ όΠΞεΛ Ϟσϧ͕ ڧԽ "* ٕज़ͷ΋ͨΒ͔ᷮ͢ͳมԽ͕ɺҙਤͤ͵ํ޲΁ͱ ਓྨશମͷදݱ΍ߦಈΛ༠ಋ͍ͯ͘͠Մೳੑ͕͋Δ 👱 🤖 👩 🤖 📝 ✨ 🤖 ✨ 👱 🤖✨ 🤖 ✨ 49