Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Off-Policy Evaluation and Learning for Matching...
Search
Yudai Hayashi
November 09, 2025
Research
0
69
Off-Policy Evaluation and Learning for Matching Markets
RecSys 2025 論文読み会での発表資料です。
https://connpass.com/event/372676/
Yudai Hayashi
November 09, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
85
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
670
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.2k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
75
MCPを理解する
yudai00
18
14k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
230
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
2k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
1k
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
320
Other Decks in Research
See All in Research
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
390
Language Models Are Implicitly Continuous
eumesy
PRO
0
370
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
300
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
930
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
410
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
170
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
170
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
590
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
460
Featured
See All Featured
New Earth Scene 8
popppiees
0
1.3k
Context Engineering - Making Every Token Count
addyosmani
9
590
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Facilitating Awesome Meetings
lara
57
6.7k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
390
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
How to train your dragon (web standard)
notwaldorf
97
6.5k
Transcript
© 2025 Wantedly, Inc. INTERNAL ONLY Off-Policy Evaluation and Learning
for Matching Markets RecSys 2025 論文読み会 Nov. 9 2025 - Yudai Hayashi, Shuhei Goda and Yuta Saito
© 2025 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 •
所属:ウォンテッドリー株式会社 • 経歴: ◦ 2022年にデータサイエンティストとして新卒入社 • 趣味: ◦ 音楽を聞くこと ◦ ウイスキー
© 2025 Wantedly, Inc. INTERNAL ONLY マッチングプラットフォームにおける推薦システム 企業 求職者 スカウト
返信 購入 ECプラットフォーム マッチングプラットフォーム ユーザー 商品 マッチング推薦の成功には、双方向の嗜好の一致が必要
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値が正しく推定できることのインパクト 仮に既存の方策のデータから を推定することができれば、 •
A/B テストより低コストで方策評価が可能 → オフ方策評価 • 推定した方策価値 を目的関数として学習 することでより良いモデルを得るこ とができる → オフ方策学習
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大)
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 非マッチング文脈において様々な推定量が提案されてきた マッチングプラットフォーム :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大) 双方向の嗜好が関連することにより、 正解ラベルがスパースに
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DiPS :
スカウト送信ラベル : 推定スカウト返信確率 IPS part DM part スカウト送信と返信を別々に分けて扱う • 比較的密なスカウト送信ラベルは IPS のように重要度重みを利用して低バイアスに推定 • 疎なスカウト返信は、DM のように予測モデルを利用して低バリアンスに推定
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DPR :
推定マッチ確率 スカウト送信と返信を別々に分けて扱う DiPS を DR 推定量と同じ形で拡張することで、さらにバリアンスを低減
© 2025 Wantedly, Inc. INTERNAL ONLY 評価指標 推定の正しさの指標 : 方策選択の正しさの指標
:
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 候補者数が多く、重要度重みが不安定になりやすい設定でもバリアンスを低く抑えられている •
従来手法よりも低 MSE, 低 Selection Error を達成
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 正解ラベルがスパースな設定においてもバリアンスを低く抑えられている •
推定モデルを使っているためバイアスは増加するが、スカウト送信側は重要度重みを利用している ため、DM よりバイアスの増加を抑えられている
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証 - オフ方策学習 方策価値の推定値を最大化させるようにモデルを学習
既存方策の性能を示す基準線 (黒線) や、他の推定量を使って学習したときよりも高い性能を 示している
© 2025 Wantedly, Inc. INTERNAL ONLY 実データによる検証 Wantedly Visit の過去のオンラインテストの結果を使って検証
• バリアンスの低減効果が実データにおいても見られた • 従来手法 (IPS, DR) と比較して、バイアスも低下するような振る舞い ◦ 返信確率の誤差 + α で説明できる (詳細は論文を参照してください)
© 2025 Wantedly, Inc. INTERNAL ONLY まとめ • マッチングプラットフォームにおいて、信頼度高く新しい方策の価値を推定するための 2つの推定
量 DiPS、DPR を提案 • 合成データと Wantedly Visit の実データの両方を使って提案手法の有効性を実証 • オフ方策学習においても、従来手法よりも高い性能のモデルを得ることができることを実証 ブログ記事 arXiv