Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Off-Policy Evaluation and Learning for Matching...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yudai Hayashi
November 09, 2025
Research
0
81
Off-Policy Evaluation and Learning for Matching Markets
RecSys 2025 論文読み会での発表資料です。
https://connpass.com/event/372676/
Yudai Hayashi
November 09, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
96
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
680
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.3k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
78
MCPを理解する
yudai00
18
14k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
240
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
2k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
1k
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
330
Other Decks in Research
See All in Research
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
640
[チュートリアル] 電波マップ構築入門 :研究動向と課題設定の勘所
k_sato
0
230
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
480
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
240
財務諸表監査のための逐次検定
masakat0
1
250
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
410
Remote sensing × Multi-modal meta survey
satai
4
700
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
54
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
61
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
430
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Utilizing Notion as your number one productivity tool
mfonobong
2
210
Transcript
© 2025 Wantedly, Inc. INTERNAL ONLY Off-Policy Evaluation and Learning
for Matching Markets RecSys 2025 論文読み会 Nov. 9 2025 - Yudai Hayashi, Shuhei Goda and Yuta Saito
© 2025 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 •
所属:ウォンテッドリー株式会社 • 経歴: ◦ 2022年にデータサイエンティストとして新卒入社 • 趣味: ◦ 音楽を聞くこと ◦ ウイスキー
© 2025 Wantedly, Inc. INTERNAL ONLY マッチングプラットフォームにおける推薦システム 企業 求職者 スカウト
返信 購入 ECプラットフォーム マッチングプラットフォーム ユーザー 商品 マッチング推薦の成功には、双方向の嗜好の一致が必要
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値が正しく推定できることのインパクト 仮に既存の方策のデータから を推定することができれば、 •
A/B テストより低コストで方策評価が可能 → オフ方策評価 • 推定した方策価値 を目的関数として学習 することでより良いモデルを得るこ とができる → オフ方策学習
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大)
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 非マッチング文脈において様々な推定量が提案されてきた マッチングプラットフォーム :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大) 双方向の嗜好が関連することにより、 正解ラベルがスパースに
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DiPS :
スカウト送信ラベル : 推定スカウト返信確率 IPS part DM part スカウト送信と返信を別々に分けて扱う • 比較的密なスカウト送信ラベルは IPS のように重要度重みを利用して低バイアスに推定 • 疎なスカウト返信は、DM のように予測モデルを利用して低バリアンスに推定
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DPR :
推定マッチ確率 スカウト送信と返信を別々に分けて扱う DiPS を DR 推定量と同じ形で拡張することで、さらにバリアンスを低減
© 2025 Wantedly, Inc. INTERNAL ONLY 評価指標 推定の正しさの指標 : 方策選択の正しさの指標
:
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 候補者数が多く、重要度重みが不安定になりやすい設定でもバリアンスを低く抑えられている •
従来手法よりも低 MSE, 低 Selection Error を達成
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 正解ラベルがスパースな設定においてもバリアンスを低く抑えられている •
推定モデルを使っているためバイアスは増加するが、スカウト送信側は重要度重みを利用している ため、DM よりバイアスの増加を抑えられている
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証 - オフ方策学習 方策価値の推定値を最大化させるようにモデルを学習
既存方策の性能を示す基準線 (黒線) や、他の推定量を使って学習したときよりも高い性能を 示している
© 2025 Wantedly, Inc. INTERNAL ONLY 実データによる検証 Wantedly Visit の過去のオンラインテストの結果を使って検証
• バリアンスの低減効果が実データにおいても見られた • 従来手法 (IPS, DR) と比較して、バイアスも低下するような振る舞い ◦ 返信確率の誤差 + α で説明できる (詳細は論文を参照してください)
© 2025 Wantedly, Inc. INTERNAL ONLY まとめ • マッチングプラットフォームにおいて、信頼度高く新しい方策の価値を推定するための 2つの推定
量 DiPS、DPR を提案 • 合成データと Wantedly Visit の実データの両方を使って提案手法の有効性を実証 • オフ方策学習においても、従来手法よりも高い性能のモデルを得ることができることを実証 ブログ記事 arXiv