Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hive 集計テクニック
Search
Yuki Ishikawa
April 19, 2019
Technology
0
510
Hive 集計テクニック
2019.04.19 中国地方DB勉強会 in 沖縄
Yuki Ishikawa
April 19, 2019
Tweet
Share
More Decks by Yuki Ishikawa
See All by Yuki Ishikawa
Snowflake Openflow さわってみた
hoto17296
0
240
第3回 Snowflake 中部ユーザ会- dbt × Snowflake ハンズオン
hoto17296
4
1.1k
ORM と向き合う
hoto17296
14
11k
明日業務で役立たない Web 開発 TIPS
hoto17296
0
190
クソ bot 実装ライブコーディング
hoto17296
0
230
DeepGBM 論文の紹介
hoto17296
0
610
試行錯誤のための Docker 活用術
hoto17296
4
3.1k
データ分析と Docker / Data Analysis with Docker
hoto17296
0
380
DeepCluster 論文の紹介
hoto17296
7
2.6k
Other Decks in Technology
See All in Technology
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
48k
Digitization部 紹介資料
sansan33
PRO
1
6.1k
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
42
25k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
37k
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
手動から自動へ、そしてその先へ
moritamasami
0
180
MAP-7thplaceSolution
yukichi0403
2
250
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
9
1.9k
私も懇親会は苦手でした ~苦手だからこそ懇親会を楽しむ方法~ / 20251127 Masaki Okuda
shift_evolve
PRO
4
550
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
760
Master Dataグループ紹介資料
sansan33
PRO
1
4k
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
110
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
GitHub's CSS Performance
jonrohan
1032
470k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
It's Worth the Effort
3n
187
29k
The Cult of Friendly URLs
andyhume
79
6.7k
What's in a price? How to price your products and services
michaelherold
246
12k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Designing for Performance
lara
610
69k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Transcript
Hive ूܭςΫχοΫ 2019.04.19 தࠃํDBษڧձ in ԭೄ @hoto17296
RDB ͚͕ͩ DB Ͱͳ͍ ʂʂʂʂʂ
@hoto17296 • ͪΎΒσʔλגࣜձࣾ σʔλΞφϦετ • ԭೄͷडୗσʔλੳձࣾ • ࠓͷΠϕϯτʹԿਓ͔ࣾһ͍Δ
খωλͰ͢
Apache Hive • Hadoop ͷࢄετϨʔδ (HDFS) ্ͷ σʔλΛ SQL ϥΠΫʹૢ࡞Ͱ͖Δݴޠ
• େنσʔλੳج൫ͳͲʹΑ͘ΘΕΔ • PostgreSQL ͱ͔ͱಉ͡ϊϦͰॻ͘ͱࢮ͵ • Map Reduce ͷ͓ؾ࣋ͪΛͯ͠
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ Α͋͘ΔΦʔσΟΤϯεσʔλ
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ ࠂ ID ϢχʔΫ͔ͱࢥ͍͖ ΊͪΌͪ͘Όॏෳ͍ͯ͠Δ ಉ͡ ID Ͱଐੑσʔλ (ਪఆ) ͕ ͦΕͧΕҧ͏
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ time ͕࠷৽͍͠1ߦ͚ͩͯ͠ଞશͯআ֎͍ͨ͠
1. ·ͣࢥ͍ͭͭ͘
Ϛονϣա͗Δ • શΧϥϜॻ͔ͳ͍ͱ͍͚ͳ͍ • ༻్͕ຊདྷͷ MAX Ͱͳ͍ • จࣈྻΧϥϜʹ MAX
͢Δͷؾ͕Ҿ͚Δ • ࠷৽ͷσʔλ͕औΕΔΘ͚Ͱͳ͍
2. ΟϯυؔΛ͏ͭ
ROW_NUMBER Πϝʔδ time ࠂID ੑผ طࠗ ऩ rank 1555664019
253678c9 உ 20-24 ະࠗ 500ສ 1 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 2 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ 1 PARTITION BY ORDER BY
ROW_NUMBER ศར • ͱͯΘ͔Γ͍͢ • ͔֬ PostgreSQL Ͱ͑Δ • ൚༻ੑ
(ʁ) ͕͋ͬͯྑ͍
3. Hivemall Λ͏ͭ
Hivemall • Hive ্Ͱػցֶश͢ΔͨΊͷϥΠϒϥϦ • SQL ͰػցֶशͰ͖Δ • Apache Incubation
Project ʹબΕͨ • ͍͢͝ (খฒײ)
EACH_TOP_K ؔ • Hivemall ʹؚ·Ε͍ͯΔؔ • Ϋϥελʔ͝ͱʹ K ݸͷσʔλΛऔಘͰ͖Δ •
(ϢʔεέʔεʹΑͬͯ) ROW_NUMBER ΑΓ͍
͞ͷݕূ • Treasure Data ͷαϯϓϧσʔληοτͰ͋Δ NASDAQ ͷגՁσʔλ (880ສߦ) Λର •
֤ฑ͝ͱͷ࠷৽ͷגՁΛऔಘ͢ΔΫΤϦΛ ROW_NUMBER ͱ EACH_TOP_K Ͱॻ͖ɺ ࣮ߦ࣌ؒΛܭଌ͢Δ
ݕূ݁Ռ 1.46 ഒ͘Β͍ EACH_TOP_K ͷํ͕ ͔ͬͨ ROW_NUMBER EACH_TOP_K 85 ඵ
124 ඵ
ͳ͍͔ͥʁ time symbol volume rank 1555102800 APPL 198.87 1 1555016400
APPL 198.95 2 1554930000 APPL 200.62 3 1554843600 APPL 199.50 4 1555102800 MSFT 120.95 1 1555016400 MSFT 120.33 2 1554930000 MSFT 120.19 3 1554843600 MSFT 119.28 4 ROW_NUMBER શͯͷߦʹ൪߸Λ ৼ͔ͬͯΒߜΓࠐΉ
ͳ͍͔ͥʁ time symbol volume 1555102800 APPL 198.87 1555016400 APPL 198.95
1554930000 APPL 200.62 1554843600 APPL 199.50 1555102800 MSFT 120.95 1555016400 MSFT 120.33 1554930000 MSFT 120.19 1554843600 MSFT 119.28 EACH_TOP_K ඞཁͳ͚ͩऔಘͨ͠Β ͋ͱॲཧ͠ͳ͍
Φν͕ͳ͍ (·ͱΊ) • Hive Ͱʮάϧʔϓ͝ͱʹτοϓ N ݅Λऔಘʯ ͍ͨ͠߹ ROW_NUMBER ͕͑Δ
• Hivemall ͕͑Δ߹ EACH_TOP_K Λ ͏ͱΑΓ͘ͳΔ͔͠Εͳ͍
ʲPRʳ