Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hive 集計テクニック
Search
Yuki Ishikawa
April 19, 2019
Technology
0
490
Hive 集計テクニック
2019.04.19 中国地方DB勉強会 in 沖縄
Yuki Ishikawa
April 19, 2019
Tweet
Share
More Decks by Yuki Ishikawa
See All by Yuki Ishikawa
第3回 Snowflake 中部ユーザ会- dbt × Snowflake ハンズオン
hoto17296
4
870
ORM と向き合う
hoto17296
14
10k
明日業務で役立たない Web 開発 TIPS
hoto17296
0
170
クソ bot 実装ライブコーディング
hoto17296
0
220
DeepGBM 論文の紹介
hoto17296
0
570
試行錯誤のための Docker 活用術
hoto17296
4
3k
データ分析と Docker / Data Analysis with Docker
hoto17296
0
360
DeepCluster 論文の紹介
hoto17296
7
2.5k
最新論文を追う技術 / Technology to follow the latest paper
hoto17296
2
260
Other Decks in Technology
See All in Technology
私とAWSとの関わりの歩み~意志あるところに道は開けるかも?~
nagisa53
1
140
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
1.1k
Kiroから考える AIコーディングツールの潮流
s4yuba
2
560
「AI駆動開発」のボトルネック『言語化』を効率化するには
taniiicom
1
230
Rubyの国のPerlMonger
anatofuz
1
370
With Devin -AIの自律とメンバーの自立
kotanin0
2
960
モバイルゲームの開発を支える基盤の歩み ~再現性のある開発ラインを量産する秘訣~
qualiarts
0
940
少人数でも回る! DevinとPlaybookで支える運用改善
ishikawa_pro
5
2k
「育てる」サーバーレス 〜チーム開発研修で学んだ、小さく始めて大きく拡張するAWS設計〜
yu_kod
1
210
MCPと認可まわりの話 / mcp_and_authorization
convto
2
340
robocopy の怖い話/scary-story-about-robocopy
emiki
0
420
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
1
400
Featured
See All Featured
Docker and Python
trallard
45
3.5k
Testing 201, or: Great Expectations
jmmastey
44
7.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
A Tale of Four Properties
chriscoyier
160
23k
Embracing the Ebb and Flow
colly
86
4.8k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Being A Developer After 40
akosma
90
590k
How to Ace a Technical Interview
jacobian
278
23k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Transcript
Hive ूܭςΫχοΫ 2019.04.19 தࠃํDBษڧձ in ԭೄ @hoto17296
RDB ͚͕ͩ DB Ͱͳ͍ ʂʂʂʂʂ
@hoto17296 • ͪΎΒσʔλגࣜձࣾ σʔλΞφϦετ • ԭೄͷडୗσʔλੳձࣾ • ࠓͷΠϕϯτʹԿਓ͔ࣾһ͍Δ
খωλͰ͢
Apache Hive • Hadoop ͷࢄετϨʔδ (HDFS) ্ͷ σʔλΛ SQL ϥΠΫʹૢ࡞Ͱ͖Δݴޠ
• େنσʔλੳج൫ͳͲʹΑ͘ΘΕΔ • PostgreSQL ͱ͔ͱಉ͡ϊϦͰॻ͘ͱࢮ͵ • Map Reduce ͷ͓ؾ࣋ͪΛͯ͠
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ Α͋͘ΔΦʔσΟΤϯεσʔλ
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ ࠂ ID ϢχʔΫ͔ͱࢥ͍͖ ΊͪΌͪ͘Όॏෳ͍ͯ͠Δ ಉ͡ ID Ͱଐੑσʔλ (ਪఆ) ͕ ͦΕͧΕҧ͏
Γ͍ͨ͜ͱ time ࠂID ੑผ طࠗ ऩ 1555664019 253678c9 உ
20-24 ະࠗ 500ສ 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ time ͕࠷৽͍͠1ߦ͚ͩͯ͠ଞશͯআ֎͍ͨ͠
1. ·ͣࢥ͍ͭͭ͘
Ϛονϣա͗Δ • શΧϥϜॻ͔ͳ͍ͱ͍͚ͳ͍ • ༻్͕ຊདྷͷ MAX Ͱͳ͍ • จࣈྻΧϥϜʹ MAX
͢Δͷؾ͕Ҿ͚Δ • ࠷৽ͷσʔλ͕औΕΔΘ͚Ͱͳ͍
2. ΟϯυؔΛ͏ͭ
ROW_NUMBER Πϝʔδ time ࠂID ੑผ طࠗ ऩ rank 1555664019
253678c9 உ 20-24 ະࠗ 500ສ 1 1555664020 2baf1f40 ঁ 35-38 طࠗ 400ສ 1 1555664022 105d9501 உ 25-29 ະࠗ 500ສ 1 1555664022 fe319a8e உ 30-34 طࠗ 600ສ 2 1555664024 c463fdf4 ঁ 20-24 طࠗ 400ສ 1 1555664027 325a2a5d உ 40-44 طࠗ 800ສ 1 1555664029 f445adf3 ঁ 25-29 ະࠗ 500ສ 1 1555664034 fe319a8e உ 35-38 طࠗ 600ສ 1 1555664034 f572f626 ঁ 25-29 ະࠗ 400ສ 1 PARTITION BY ORDER BY
ROW_NUMBER ศར • ͱͯΘ͔Γ͍͢ • ͔֬ PostgreSQL Ͱ͑Δ • ൚༻ੑ
(ʁ) ͕͋ͬͯྑ͍
3. Hivemall Λ͏ͭ
Hivemall • Hive ্Ͱػցֶश͢ΔͨΊͷϥΠϒϥϦ • SQL ͰػցֶशͰ͖Δ • Apache Incubation
Project ʹબΕͨ • ͍͢͝ (খฒײ)
EACH_TOP_K ؔ • Hivemall ʹؚ·Ε͍ͯΔؔ • Ϋϥελʔ͝ͱʹ K ݸͷσʔλΛऔಘͰ͖Δ •
(ϢʔεέʔεʹΑͬͯ) ROW_NUMBER ΑΓ͍
͞ͷݕূ • Treasure Data ͷαϯϓϧσʔληοτͰ͋Δ NASDAQ ͷגՁσʔλ (880ສߦ) Λର •
֤ฑ͝ͱͷ࠷৽ͷגՁΛऔಘ͢ΔΫΤϦΛ ROW_NUMBER ͱ EACH_TOP_K Ͱॻ͖ɺ ࣮ߦ࣌ؒΛܭଌ͢Δ
ݕূ݁Ռ 1.46 ഒ͘Β͍ EACH_TOP_K ͷํ͕ ͔ͬͨ ROW_NUMBER EACH_TOP_K 85 ඵ
124 ඵ
ͳ͍͔ͥʁ time symbol volume rank 1555102800 APPL 198.87 1 1555016400
APPL 198.95 2 1554930000 APPL 200.62 3 1554843600 APPL 199.50 4 1555102800 MSFT 120.95 1 1555016400 MSFT 120.33 2 1554930000 MSFT 120.19 3 1554843600 MSFT 119.28 4 ROW_NUMBER શͯͷߦʹ൪߸Λ ৼ͔ͬͯΒߜΓࠐΉ
ͳ͍͔ͥʁ time symbol volume 1555102800 APPL 198.87 1555016400 APPL 198.95
1554930000 APPL 200.62 1554843600 APPL 199.50 1555102800 MSFT 120.95 1555016400 MSFT 120.33 1554930000 MSFT 120.19 1554843600 MSFT 119.28 EACH_TOP_K ඞཁͳ͚ͩऔಘͨ͠Β ͋ͱॲཧ͠ͳ͍
Φν͕ͳ͍ (·ͱΊ) • Hive Ͱʮάϧʔϓ͝ͱʹτοϓ N ݅Λऔಘʯ ͍ͨ͠߹ ROW_NUMBER ͕͑Δ
• Hivemall ͕͑Δ߹ EACH_TOP_K Λ ͏ͱΑΓ͘ͳΔ͔͠Εͳ͍
ʲPRʳ