Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
150
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
380
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
580
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
870
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
Backlog AI アシスタントが切り開く未来
vvatanabe
1
140
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
260
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
0
150
AWS DDoS攻撃防御の最前線
ryutakondo
1
170
ユーザー課題を愛し抜く――AI時代のPdM価値
kakehashi
PRO
1
120
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
1.1k
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
10
2.3k
大規模イベントに向けた ABEMA アーキテクチャの遍歴 ~ Platform Strategy 詳細解説 ~
nagapad
0
230
Telemetry APIから学ぶGoogle Cloud ObservabilityとOpenTelemetryの現在 / getting-started-telemetry-api-with-google-cloud
k6s4i53rx
0
150
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
120
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
150
UDDのススメ - 拡張版 -
maguroalternative
1
580
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Side Projects
sachag
455
43k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net