Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
130
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
330
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
540
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
650
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
830
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1k
Entity representation with relational attention
izuna385
0
78
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
540
Other Decks in Technology
See All in Technology
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
19
18k
どっちの API SHOW?SharePoint 開発における SharePoint REST API Microsoft Graph API の違い / Which API show? Differences between Microsoft Graph API and SharePoint REST API
karamem0
0
110
職種に名前が付く、ということ/The fact that a job title has a name
bitkey
1
240
Engineering Managementのグローバルトレンド #emoasis / Engineering Management Global Trend
kyonmm
PRO
6
990
[CATS]Amazon Bedrock GenUハンズオン座学資料 #2 GenU環境でRAGを体験してみよう
tsukuboshi
0
140
コード品質向上で得られる効果と実践的取り組み
ham0215
2
200
一人QA時代が終わり、 QAチームが立ち上がった話
ma_cho29
0
290
KCD Brazil '25: Enabling Developers with Dapr & Backstage
salaboy
1
120
AWS CDK コントリビュート はじめの一歩
yendoooo
1
120
問題解決に役立つ数理工学
recruitengineers
PRO
7
2.2k
caching_sha2_passwordのはなし
boro1234
0
220
チームビルディング「脅威モデリング」ワークショップ
koheiyoshikawa
0
140
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
How to Ace a Technical Interview
jacobian
276
23k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Embracing the Ebb and Flow
colly
85
4.6k
A Modern Web Designer's Workflow
chriscoyier
693
190k
BBQ
matthewcrist
88
9.5k
YesSQL, Process and Tooling at Scale
rocio
172
14k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Adopting Sorbet at Scale
ufuk
75
9.3k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net