Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
120
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
310
Firebase-React-App
izuna385
0
220
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.5k
UseCase of Entity Linking
izuna385
0
500
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
630
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
740
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
960
Entity representation with relational attention
izuna385
0
74
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
500
Other Decks in Technology
See All in Technology
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
230
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
180
Engineer Career Talk
lycorp_recruit_jp
0
190
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
120
AGIについてChatGPTに聞いてみた
blueb
0
130
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
540
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
4
230
Zennのパフォーマンスモニタリングでやっていること
ryosukeigarashi
0
150
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
300
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
140
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
430
Featured
See All Featured
Music & Morning Musume
bryan
46
6.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Being A Developer After 40
akosma
87
590k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
For a Future-Friendly Web
brad_frost
175
9.4k
Docker and Python
trallard
40
3.1k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Bash Introduction
62gerente
608
210k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net