Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
140
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
360
Firebase-React-App
izuna385
0
240
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
560
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
650
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
850
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Technology
See All in Technology
AWS全冠したので振りかえってみる
tajimon
0
120
kotlin-lsp を Emacs で使えるようにしてみた / use kotlin-lsp in Emacs
nabeo
0
120
Devin(Deep) Wiki/Searchの活用で変わる開発の世界観/devin-wiki-search-impact
tomoki10
0
250
Classmethod AI Talks(CATs) #22 司会進行スライド(2025.06.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol22_2025-06-12
shinyaa31
0
190
Kotlinで学ぶ 代数的データ型
ysknsid25
5
1k
堅牢な認証基盤の実現 TypeScriptで代数的データ型を活用する
kakehashi
PRO
1
200
Text-to-SQLの評価データセットを作って最新LLMモデルの性能評価をしてみた
gotalab555
3
760
Whats_new_in_Podman_and_CRI-O_2025-06
orimanabu
3
170
「どこにある?」の解決。生成AI(RAG)で効率化するガバメントクラウド運用
toru_kubota
2
290
"SaaS is Dead" は本当か!? 生成AI時代の医療 Vertical SaaS のリアル
kakehashi
PRO
2
140
Securing your Lambda 101
chillzprezi
0
230
Kubernetesで作るAIプラットフォーム
oracle4engineer
PRO
2
250
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
How GitHub (no longer) Works
holman
314
140k
Site-Speed That Sticks
csswizardry
10
620
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Balancing Empowerment & Direction
lara
1
250
GitHub's CSS Performance
jonrohan
1031
460k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net