Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
130
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
330
Firebase-React-App
izuna385
0
230
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.6k
UseCase of Entity Linking
izuna385
0
530
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
640
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
800
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1k
Entity representation with relational attention
izuna385
0
75
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
530
Other Decks in Technology
See All in Technology
AndroidデバイスにFTPサーバを建立する
e10dokup
0
250
表現を育てる
kiyou77
1
210
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
360
Raycast AI APIを使ってちょっと便利な拡張機能を作ってみた / created-a-handy-extension-using-the-raycast-ai-api
kawamataryo
0
100
飲食店予約台帳を支えるインタラクティブ UI 設計と実装
siropaca
7
1.8k
リーダブルテストコード 〜メンテナンスしやすい テストコードを作成する方法を考える〜 #DevSumi #DevSumiB / Readable test code
nihonbuson
11
7.3k
利用終了したドメイン名の最強終活〜観測環境を育てて、分析・供養している件〜 / The Ultimate End-of-Life Preparation for Discontinued Domain Names
nttcom
2
200
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
540
Tech Blogを書きやすい環境づくり
lycorptech_jp
PRO
1
240
Platform Engineeringは自由のめまい
nwiizo
4
2.1k
プロセス改善による品質向上事例
tomasagi
2
2.6k
分解して理解する Aspire
nenonaninu
1
180
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Being A Developer After 40
akosma
89
590k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Gamification - CAS2011
davidbonilla
80
5.1k
Code Reviewing Like a Champion
maltzj
521
39k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Adopting Sorbet at Scale
ufuk
74
9.2k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net