Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Problems of Neural Networks and its solutions
Search
izuna385
June 21, 2018
Technology
0
150
Problems of Neural Networks and its solutions
Residual Connections とBatch Normalizationがメイン
izuna385
June 21, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
420
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
590
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
670
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
900
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
88
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
580
Other Decks in Technology
See All in Technology
Proxmox × HCP Terraformで始めるお家プライベートクラウド
lamaglama39
1
200
CodexでもAgent Skillsを使いたい
gotalab555
9
4.6k
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
170
仕様駆動 x Codex で 超効率開発
ismk
2
1.4k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
1.3k
これからアウトプットする人たちへ - アウトプットを支える技術 / that support output
soudai
PRO
18
5.4k
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
4
3.5k
データとAIで未来を創るDatabricks - 君の可能性を加速させるプラットフォーム
taka_aki
0
110
「もっと正確に、もっと効率的に」ANDPADの写真書き込み機能における、 現場の声を形にしたエンハンス
andpad
0
100
Quarkusで作るInteractive Stream Application
joker1007
0
140
お試しで oxlint を導入してみる #vuefes_aftertalk
bengo4com
2
1.5k
What's the recommended Flutter architecture
aakira
3
1.5k
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
A better future with KSS
kneath
239
18k
Music & Morning Musume
bryan
46
6.9k
Gamification - CAS2011
davidbonilla
81
5.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
930
Balancing Empowerment & Direction
lara
5
740
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
For a Future-Friendly Web
brad_frost
180
10k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
4 Signs Your Business is Dying
shpigford
186
22k
Transcript
1 / 18 Neural Networks
2 / 18 1. NN !
• Residual Network • Batch Normalization 2. 1. • •
3 / 18 Plain NNs(&) ' pros #%
" (ex. CNN, RNN, ...) cons ! $ $
4 / 18 RNN RNN [1] P. Razvan et
al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! : hidden state '%&' : '() : input / !" = '*+, 2 !"#$ + '() %"
5 / 18 !" !# !$ %" %# %$ &'(
&'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN 3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6
6 / 18 RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
7 / 18 ,$+ /' !"#$ !- !"#$ 2 %
× '()* + ×%,- → # !"#$ !"#$ . 2 % × '()*(+).,-×%,- 1%input or 1)* Loss( RNN ."0& Vanishing/Exploding Gradient
8 / 18 +$ DeepNN( ! +
" )*&!/#% ' (→ ! Loss func ! Loss func → Residual Connection, Batch No malization
9 / 18 0), : Residual Connection – -– F(x)
"/#2 → "/ F(x) + x → (4 '$"/ Identity Mapping +%*1&: 3 . ! 3 Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.
10 / 18 : Residual Connection –– ' Forward
$#& Backward !$"& Deep % & input
11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
12 / 18 ResNet Batch Normalization ResNet Residual Block
• ImplementationBatch Normalization NN ! $# • Batch Normalization" ## http://torch.ch/blog/2016/02/04/resnets.html Plain
13 / 18 ( ) 1 2
( ) n … Batch Normalization –Revisit Gaussian-
14 / 18 Batch Normalization -Input Data distribution
- (Convergence) !! Input NN → input
15 / 18 Batch Normalization -distribution - !"#$% & '
= ) & ' ← ' − , - ~/(,, -2) input
16 / 18 Batch Normalization Data distribution •
=(!, ")fix • Batch Normalization Batch Normalization
17 / 18 Batch Normalization – [2]Ioffe, Sergey,
and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( → normalize scaling '"&# nomalize
18 / 18 DeepNN+ ! /
& -"#.#)%/'( *$ +!→ , Identity – normalize scaling implement Deep Net