Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Predicting and understanding phase stability us...

Jonathan Skelton
February 06, 2023

Predicting and understanding phase stability using lattice-dynamics modelling

Presented at the Vienna Ab-initio Simulation Package (VASP) Ecosystem on 6th February 2023.

Jonathan Skelton

February 06, 2023
Tweet

More Decks by Jonathan Skelton

Other Decks in Science

Transcript

  1. Dr Jonathan Skelton Department of Chemistry, University of Manchester ([email protected])

    Predicting and understanding phase stability using lattice-dynamics modelling
  2. Lattice dynamics VASP Workshop, 6th Feb 2023 | Slide 2

    Dr Jonathan Skelton Consider the Taylor expansion of the crystal potential energy: The second-order force constants 𝚽!,!! can be used to derive the phonon modes within the harmonic approximation 𝜑 𝒖 = Φ# + ' ! ' $ Φ! $𝑢! $ + 1 2 ' !,!! ' $,% Φ !,!! $% 𝑢! $𝑢 !! % + 1 3! ' !,!!,!!! ' $,%,& Φ !,!!,!!! $%& 𝑢! $𝑢 !! % 𝑢 !!! & + ⋯ Third- and higher-order force constants e.g. 𝚽!,!!,!!! capture various forms of anharmonicity and can be used to build on the basic HA e.g. for a perturbative treatment of phonon lifetimes Lattice energy 𝑈'()) Atomic forces (vanish at equilibrium) Harmonic approx. Anharmonicity
  3. Phonons and phase stability VASP Workshop, 6th Feb 2023 |

    Slide 5 Dr Jonathan Skelton Geometry Optimisation Energy/Volume EoS 𝐸(𝑉) Athermal Energy 𝐸" Helmholtz Energy 𝐴(𝑇) Helmholtz Energy 𝐴(𝑉, 𝑇) Gibbs Energy 𝐺(𝑇, 𝑝) Dynamical Stability Phonons
  4. Example: the tin sulphides Rocksalt Pnma Cmcm 𝜋-cubic SnS2 Sn2

    S3 Zincblende VASP Workshop, 6th Feb 2023 | Slide 6 Dr Jonathan Skelton
  5. Energetics I: convex hull J. M. Skelton et al., J.

    Phys. Chem. C 121 (12), 6446 (2017) VASP Workshop, 6th Feb 2023 | Slide 7 Dr Jonathan Skelton
  6. Thermodynamics I Using the harmonic approximation, we can calculate the

    Helmholtz free energy 𝐴(𝑇): 𝐴 𝑇 = 𝑈'()) + 𝐴*+, 𝑇 = 𝑈'()) + 𝑈*+,(𝑇) − 𝑇𝑆*+,(𝑇) The 𝐴*+, 𝑇 term is calculated using the bridge relation from the partition function 𝑍*+, 𝑇 : 𝑍*+, 𝑇 = 6 𝐪. exp[− ⁄ ℏ𝜔𝐪. 2𝑘/𝑇] 1 − exp[− ⁄ ℏ𝜔𝐪. 𝑘/𝑇] 𝐴*+, 𝑇 = − 1 𝑁 𝑘/ 𝑇ln 𝑍*+, 𝑇 = 1 𝑁 1 2 ' 𝐪. ℏ𝜔𝐪. + 𝑘/ 𝑇 ' 𝐪. ln 1 − exp − ⁄ ℏ𝜔𝐪. 𝑘/ 𝑇 In typical DFT calculations the 𝑈'()) is temperature independent - the phonon frequencies allows the temperature-dependent Helmholtz energy to be calculated VASP Workshop, 6th Feb 2023 | Slide 8 Dr Jonathan Skelton
  7. Energetics II: Helmholtz energy J. M. Skelton et al., J.

    Phys. Chem. C 121 (12), 6446 (2017) VASP Workshop, 6th Feb 2023 | Slide 9 Dr Jonathan Skelton
  8. Thermodynamics II Using the harmonic approximation, we can calculate the

    Helmholtz free energy 𝐴(𝑇): 𝐴(𝑇) = 𝑈'()) + 𝑈*+,(𝑇) − 𝑇𝑆*+,(𝑇) If we also take into account the volume dependence of 𝑈'()) and the phonon frequencies, we can calculate the Gibbs free energy 𝐺(𝑇) (the quasi-harmonic approximation): 𝐺 𝑇 = min 0 𝐴 𝑇; 𝑉 + 𝑝𝑉 = min 0 𝑈'()) (𝑉) + 𝑈*+, (𝑇; 𝑉) − 𝑇𝑆*+, (𝑇; 𝑉) + 𝑝𝑉 This is typically achieved by minimising a free-energy equation of state, which yields other properties such as 𝑉(𝑇) and 𝐵(𝑇) alongside 𝐺(𝑇) (𝐺 is arguably a more experimentally-relevant quantity, and we can also explore the effect of pressure through the 𝑝𝑉 term.) VASP Workshop, 6th Feb 2023 | Slide 10 Dr Jonathan Skelton
  9. Energetics III: Gibbs vs Helmholtz I. Pallikara and J. M.

    Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 11 Dr Jonathan Skelton
  10. Imaginary modes I: Cmcm SnSe J. M. Skelton et al.,

    Phys. Rev. Lett 117, 075502 (2016) VASP Workshop, 6th Feb 2023 | Slide 12 Dr Jonathan Skelton
  11. Dynamical stability U(Q) Q Real PES HA U(Q) Q Real

    PES HA 𝑈 𝑄 = 1 2 𝜇𝜔1𝑄1 VASP Workshop, 6th Feb 2023 | Slide 13 Dr Jonathan Skelton
  12. Imaginary mode PES mapping J. M. Skelton et al., Phys.

    Rev. Lett 117, 075502 (2016) VASP Workshop, 6th Feb 2023 | Slide 14 Dr Jonathan Skelton
  13. Imaginary modes I: Cmcm SnSe VASP Workshop, 6th Feb 2023

    | Slide 15 Dr Jonathan Skelton Low 𝑇: Pnma High 𝑇: Cmcm (Average structure) I. Pallikara and J. M. Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021)
  14. Pressure and dynamical stability I. Pallikara and J. M. Skelton,

    Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 16 Dr Jonathan Skelton
  15. Energetics IV: p/T phase diagram I. Pallikara and J. M.

    Skelton, Phys. Chem. Chem. Phys. 23, 19219 (2021) VASP Workshop, 6th Feb 2023 | Slide 17 Dr Jonathan Skelton
  16. Hybrid perovskites: (CH3 NH3 )PbI3 Orthorhombic (𝑇 < 165 K)

    Tetragonal (𝑇 =165-327 K) Cubic (𝑇 > 327 K) VASP Workshop, 6th Feb 2023 | Slide 18 Dr Jonathan Skelton A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)
  17. Imaginary modes II: MAPbI3 c-MAPbI3 VASP Workshop, 6th Feb 2023

    | Slide 19 Dr Jonathan Skelton L. D. Whalley et al., Phys. Rev. B 94, 220301(R) (2016)
  18. VASP Workshop, 6th Feb 2023 | Slide 20 Dr Jonathan

    Skelton Imaginary modes II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)
  19. VASP Workshop, 6th Feb 2023 | Slide 21 Dr Jonathan

    Skelton Imaginary modes II: MAPbI3 A. N. Beecher et al., ACS Energy Lett. 1 (4), 880 (2016)
  20. VASP Workshop, 6th Feb 2023 | Slide 22 Dr Jonathan

    Skelton Imaginary modes III: Bi2 Sn2 O7 W. Rahim et al., Chem. Sci. 11, 7904 (2020)
  21. VASP Workshop, 6th Feb 2023 | Slide 23 Dr Jonathan

    Skelton Imaginary modes III: Bi2 Sn2 O7 W. Rahim et al., Chem. Sci. 11, 7904 (2020)
  22. Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 24

    Dr Jonathan Skelton B. Wei et al., Molecules 27 (19), 6431 (2022)
  23. Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 25

    Dr Jonathan Skelton B. Wei et al., Molecules 27 (19), 6431 (2022)
  24. Phonon spectroscopy VASP Workshop, 6th Feb 2023 | Slide 26

    Dr Jonathan Skelton 𝒗 [cm-1] Ir. Rep. 𝑰!" 𝑰"#$#% Γ [cm-1] 𝒗 [cm-1] Ir. Rep. 𝑰!" 𝑰"#$#% Γ [cm-1] 0.00 B2u - - - 397.53 Ag 0.000 1.702 0.61 0.00 B1u - - - 407.82 B2u 0.029 0.000 1.20 0.00 B3u - - - 415.81 B1u 0.000 0.000 1.57 54.73 B1u 0.000 0.000 0.08 421.80 B3g 0.000 0.042 1.12 62.88 Au 0.000 0.000 0.12 426.94 B2u 0.005 0.000 1.56 80.03 Au 0.000 0.000 0.68 440.20 Ag 0.000 2.783 2.22 83.26 B3u 0.002 0.000 0.50 443.30 B2g 0.000 1.001 1.95 109.78 B2g 0.000 0.004 0.44 444.08 B1g 0.000 0.019 2.51 116.62 B1g 0.000 0.015 0.30 454.09 B3g 0.000 0.470 2.97 151.83 Ag 0.000 0.081 0.23 469.23 B3u 0.004 0.000 2.04 155.94 B2u 0.001 0.000 0.52 470.48 Ag 0.000 5.650 3.36 159.48 B3g 0.000 0.178 0.30 475.32 Au 0.000 0.000 2.43 164.25 B2u 0.000 0.000 0.33 479.41 B1g 0.000 1.092 2.40 183.06 B1u 0.007 0.000 0.56 491.32 B2g 0.000 0.925 2.26 244.23 B3g 0.000 0.010 1.40 496.49 B1u 0.008 0.000 1.25 290.37 B1u 0.168 0.000 2.74 504.58 B3g 0.000 0.001 2.73 365.10 Ag 0.000 1.394 1.86 524.36 Ag 0.000 4.379 3.58 386.98 B3g 0.000 0.067 1.19 528.69 B2u 0.002 0.000 1.67 * Intensity units: 𝐼45 - e2 amu-1; 𝐼5(6(7 - 103 Å4 amu-1 B. Wei et al., Molecules 27 (19), 6431 (2022)
  25. Summary Phonon calculations are a computationally-tractable and powerful means for

    assessing the phase stability of materials A standard DFT total-energy calculation only provides the “athermal” total energy 𝐸# and does not account for the effect of temperature The harmonic approximation provides access to the temperature-dependent Helmholtz free energy 𝐴(𝑇) The quasi-harmonic approximation provides access to the temperature- and pressure-dependent Gibbs free energy 𝐺(𝑇, 𝑝) The presence of imaginary modes in the harmonic spectrum indicate dynamical instabilities and can provide information about the nature of phase transitions and/or a means to explore the structural potential-energy surface Phonons calculations can also be used to simulate the infrared (IR) and Raman spectra, which provide a very good point of comparison to experiments VASP Workshop, 6th Feb 2023 | Slide 27 Dr Jonathan Skelton
  26. Software + resources Phonopy - https://phonopy.github.io/phonopy/ Implements the HA and

    QHA and interfaces very easily with VASP ModeMap - https://github.com/JMSkelton/ModeMap Add-on to Phonopy for mapping imaginary harmonic modes Phonopy-Spectroscopy - https://github.com/JMSkelton/Phonopy-Spectroscopy Add-on to Phonopy for simulating IR and Raman spectra Phonopy “Pro Tips” - https://www.slideshare.net/jmskelton/phonons-phonopy-pro- tips-2015 Tutorial covering various aspects of Phonopy calculations VASP Workshop, 6th Feb 2023 | Slide 28 Dr Jonathan Skelton