Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20171209 Sakura ML Night
Search
ARIYAMA Keiji
December 09, 2017
Technology
0
150
20171209 Sakura ML Night
2017年12月9日に大阪で開催された「さくらの機械学習ナイト」の発表資料です。
「TensorFlowによるNSFW(職場で不適切な)画像検出」について。
ARIYAMA Keiji
December 09, 2017
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
220
DroidKaigi 2023
keiji
0
1.9k
TechFeed Conference 2022
keiji
0
290
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
880
ci-cd-conference-2021
keiji
1
1.2k
Android Bazaar and Conference 2021 Spring
keiji
3
820
TFUG KANSAI 20190928
keiji
0
130
Softpia Japan Seminar 20190724
keiji
1
180
pixiv App Night 20190611
keiji
1
600
Other Decks in Technology
See All in Technology
Okta Identity Governanceで実現する最小権限の原則
demaecan
0
190
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
170
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
150
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.5k
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
110
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
760
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
170
AIプロダクトのプロンプト実践テクニック / Practical Techniques for AI Product Prompts
saka2jp
0
120
20251024_TROCCO/COMETAアップデート紹介といくつかデモもやります!_#p_UG 東京:データ活用が進む組織の作り方
soysoysoyb
0
130
OPENLOGI Company Profile for engineer
hr01
1
46k
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
680
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
510
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
Typedesign – Prime Four
hannesfritz
42
2.8k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Mobile First: as difficult as doing things right
swwweet
225
10k
Optimizing for Happiness
mojombo
379
70k
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Why Our Code Smells
bkeepers
PRO
340
57k
How to Think Like a Performance Engineer
csswizardry
27
2.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Transcript
C-LIS CO., LTD.
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ $-*4$0 -5% "OESPJEΞϓϦ։ൃνϣοτσΩϧ Photo by
Koji MORIGUCHI (MORIGCHOWDER) ػցֶशͪΐͬͱͬͨ͜ͱ͋Γ·͢ Twitterͬͯ·ͤΜ
͘͞ΒͷػցֶशφΠτ 5FOTPS'MPXͰ /4'8ը૾ݕग़
5FOTPS'MPXʢ݄ൃදʣ ػցೳ͚ܭࢉϑϨʔϜϫʔΫ ࠷৽όʔδϣϯʢ݄ʣ
ษڧձΖ͏ͥ
(PPHMF%FWFMPQFS(SPVQ
IUUQTHEHLPCFEPPSLFFQFSKQFWFOUT
Πϯλʔωοτ͔Β Έͷը૾ΛࣗಈͰऩू͍ͨ͠
© ࠜઇΕ͍ ؟ ڸ ͬ ່
؟ڸ່ͬఆ 1 0
σʔληοτʢ݄࣌ʣ ؟ڸ່ͬɹຕ ඇ؟ڸ່ͬຕ ؟ڸ່ͬ ඇ؟ڸ່ͬ ޡݕग़ ؟ڸ່ͬ ඇ؟ڸ່ͬ
{ "generator": "Region Cropper", "file_name": "haruki_g17.png", "regions": [ { "probability":
1.0, "label": 2, "rect": { "left": 97.0, "top": 251.0, "right": 285.0, "bottom": 383.0 } }, { "probability": 1.0, "label": 2, "rect": { "left": 536.0, "top": 175.0, "right": 730.0, "bottom": 321.0 } } ] } Region Cropper: https://github.com/keiji/region_cropper
ߏ Downloader σʔληοτ Region + Label ઃఆ rsync
ཧͷߏ Downloader Face Detection Megane Detection ֬ೝɾमਖ਼ ೝࣝ݁Ռ ֶशʢ܇࿅ʣ
λΠϜϥΠϯ ϝσΟΞ σʔληοτ ֶशʢ܇࿅ʣ TensorFlow rsync
ઓͷաఔΛಉਓࢽʹ
͞·͟·ͳ՝ σʔληοτ͕(#Λ͑ͨ͋ͨΓ͔ΒϩʔΧϧͷಉظ͕ࠔʹɻ ྖҬʢ3FHJPOʣͷઃఆͱϥϕϧͷ༩૾Ҏ্ʹෛՙ͕ߴ͍ɻ
ը૾͕ສຕΛಥഁ σʔλཧ͕ࢸٸͷ՝ʹ
ඪΛ࠶֬ೝ
Πϯλʔωοτ͔Β Έͷ؟ڸ່ͬը૾ΛࣗಈͰऩू͍ͨ͠
Ҏલͷߏ Downloader σʔληοτ Region + Label ઃఆ rsync
ྖҬʴϥϕϧ
৽͍͠ߏ Downloader σʔληοτ Tagઃఆ
λά megane girl
؟ڸ່ͬผϞσϧ Ϟσϧ 1.00 0.00
%BUBTFU.BOBHFSGPS"OESPJE
σϞ
https://twitter.com/35s_00/status/930366666973757441
https://twitter.com/_meganeco
/4'8ʢ/PU4BGF'PS8PSLʣ
/4'8ը૾
͞·͟·ͳϦεΫ ࡞ۀͷϊΠζ ਫ਼ਆతͳෛՙ ๏తϦεΫ
/4'8ը૾ͷݕग़
ֶश༻σʔληοτʢ/4'8ʣ ਖ਼ྫɿ ෛྫɿ ← NSFWը૾
܇࿅ɾֶश
ڭࢣ༗Γֶश ◦ × Ϟσϧ 1.00 0.00
Ϟσϧͷߏ conv 3x3x64 stride 1 conv 3x3x64 stride 1
ReLU ReLU conv 3x3x128 stride 1 conv 3x3x128 stride 1 ReLU conv 3x3x256 stride 1 conv 3x3x256 stride 1 ReLU output 1 256x256x1 max_pool 2x2 stride 2 max_pool 2x2 stride 2 ReLU ReLU Sigmoid max_pool 2x2 stride 2 conv 3x3x64 stride 1 ReLU fc 768 ReLU bn bn bn
Sigmoid
# モデル定義 NUM_CLASSES = 1 NAME = 'model3' IMAGE_SIZE =
256 CHANNELS = 3 def prepare_layers(image, training=False): with tf.variable_scope('inference'): conv1 = tf.layers.conv2d(image, 64, [3, 3], [1, 1], padding='SAME', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv1_1') conv1 = tf.layers.conv2d(conv1, 64, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv1_2') conv1 = tf.layers.batch_normalization(conv1, trainable=training, name='bn_1')
conv2 = tf.layers.conv2d(pool1, 128, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu,
use_bias=False, trainable=training, name='conv2_1') conv2 = tf.layers.conv2d(conv2, 128, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv2_2') conv2 = tf.layers.batch_normalization(conv2, trainable=training, name='bn_2') pool2 = tf.layers.max_pooling2d(conv2, [2, 2], [2, 2])
conv3 = tf.layers.conv2d(pool2, 256, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu,
use_bias=False, trainable=training, name='conv4_1') conv3 = tf.layers.conv2d(conv3, 256, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv4_2') conv3 = tf.layers.batch_normalization(conv3, trainable=training, name='bn_4') pool3 = tf.layers.max_pooling2d(conv3, [2, 2], [2, 2]) conv = tf.layers.conv2d(pool3, 64, [1, 1], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=True, trainable=training, name='conv') return conv
def output_layers(prev, batch_size, keep_prob=0.8, training=False): flatten = tf.reshape(prev, [batch_size, -1])
fc1 = tf.layers.dense(flatten, 768, trainable=training, activation=tf.nn.relu, name='fc1') fc1 = tf.layers.dropout(fc1, rate=keep_prob, training=training) output = tf.layers.dense(fc1, NUM_CLASSES, trainable=training, activation=None, name='output') return output
def _loss(logits, labels, batch_size, positive_ratio): cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=logits)
loss = tf.reduce_mean(cross_entropy) return loss def _init_optimizer(learning_rate): return tf.train.AdamOptimizer(learning_rate=learning_rate) ޡࠩؔͱ࠷దԽΞϧΰϦζϜ
ֶशΛ্ख͘ਐΊΔ
ਖ਼ྫɾෛྫͷൺ ਖ਼ྫɿ ෛྫɿ ← NSFWը૾ NSFW
def _hard_negative_mining(loss, labels, batch_size): positive_count = tf.reduce_sum(labels) positive_count = tf.reduce_max((positive_count,
1)) negative_count = positive_count * HARD_SAMPLE_MINING_RATIO negative_count = tf.reduce_max((negative_count, 1)) negative_count = tf.reduce_min((negative_count, batch_size)) positive_losses = loss * labels negative_losses = loss - positive_losses top_negative_losses, _ = tf.nn.top_k(negative_losses, k=tf.cast(negative_count, tf.int32)) loss = (tf.reduce_sum(positive_losses / positive_count) + tf.reduce_sum(top_negative_losses / negative_count)) return loss )BSE/FHBUJWF.JOJOH
ֶशڥʢ͘͞ΒͷߴՐྗίϯϐϡʔςΟϯάʣ $169FPO$PSFʷ .FNPSZ(# 44%(# (F'PSDF(595*5"/9ʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ (F'PSDF(595Jʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ
ֶश݅ ޡࠩؔަࠩΤϯτϩϐʔ ࠷దԽΞϧΰϦζϜ"EBN ֶश όοναΠζ
طଘͷσʔληοτʹਪʢJOGFSFODFʣΛ࣮ߦ Downloader σʔληοτ Tagઃఆ inference trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ
ਪ݁Ռ /4'8 Ұൠը૾ NSFW 8.6%
ֶश༻σʔληοτʢ/4'8ʣ ਖ਼ྫɿ ɹˠɹ ෛྫɿ ɹˠɹ
܇࿅ɾֶशʹ͔͔Δܭࢉ࣌ؒ
σϞ (16ɾ$16ͷൺֱ
$16ɾ(16ͷൺֱʢCBUDI4J[Fʣ 5*5"/9 TFDTUFQ 9FPO$PSF TFDTUFQ ࠓճͷϞσϧͷֶशʹ͍ͭͯ 5*5"/9ͷํ͕ഒ͍ʂ
$16ɾ(16ͷൺֱʢCBUDI4J[F ʣ 5*5"/9 (595J TFDTUFQ 9FPO$PSF TFDTUFQ
ࠓճͷϞσϧͷֶशʹ͍ͭͯ (16ʷͷํ͕ഒ͍ʂ
ࠓޙͷ՝
σʔληοταʔόʔͷ৴པੑ্
JOGFSFODFʢਪʣͷͨΊͷܭࢉࢿݯͷ֬อ Downloader σʔληοτ Tagઃఆ inference trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ
TAGS = [ 'original_art', 'nsfw', 'like', 'photo', 'illust', 'comic', 'face',
'girl', 'megane', ϥϕϧʢλάʣ 'school_uniform', 'blazer_uniform', 'sailor_uniform', 'gl', 'kemono', 'boy', 'bl', 'cat', 'dog', 'food', 'dislike', ]
.PWJEJVT
ਪΛ.PWJEJVTҠߦ Downloader σʔληοτ Tagઃఆ trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ inference
ΫϥεఆϞσϧ conv 3x3x64 stride 1 conv 3x3x64 stride 1
ReLU ReLU conv 3x3x128 stride 1 conv 3x3x128 stride 1 ReLU conv 3x3x256 stride 1 conv 3x3x256 stride 1 ReLU output 20 256x256x1 max_pool 2x2 stride 2 max_pool 2x2 stride 2 ReLU ReLU Sigmoid max_pool 2x2 stride 2 conv 3x3x64 stride 1 ReLU fc 768 ReLU bn bn bn
C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ 5IF"OESPJE4UVEJPJDPOJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪ͍ͯ͠·͢ɻ 5IF"OESPJESPCPUJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF https://speakerdeck.com/keiji/20171209-sakura-ml-night