Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20171209 Sakura ML Night
Search
ARIYAMA Keiji
December 09, 2017
Technology
0
150
20171209 Sakura ML Night
2017年12月9日に大阪で開催された「さくらの機械学習ナイト」の発表資料です。
「TensorFlowによるNSFW(職場で不適切な)画像検出」について。
ARIYAMA Keiji
December 09, 2017
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
200
DroidKaigi 2023
keiji
0
1.8k
TechFeed Conference 2022
keiji
0
270
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
870
ci-cd-conference-2021
keiji
1
1.2k
Android Bazaar and Conference 2021 Spring
keiji
3
800
TFUG KANSAI 20190928
keiji
0
120
Softpia Japan Seminar 20190724
keiji
1
170
pixiv App Night 20190611
keiji
1
590
Other Decks in Technology
See All in Technology
PostgreSQL 18 cancel request key長の変更とRailsへの関連
yahonda
0
120
低レイヤを知りたいPHPerのためのCコンパイラ作成入門 完全版 / Building a C Compiler for PHPers Who Want to Dive into Low-Level Programming - Expanded
tomzoh
4
3.1k
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
2
200
20250623 Findy Lunch LT Brown
3150
0
850
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
130
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
700
Prox Industries株式会社 会社紹介資料
proxindustries
0
270
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
230
SalesforceArchitectGroupOsaka#20_CNX'25_Report
atomica7sei
0
140
2年でここまで成長!AWSで育てたAI Slack botの軌跡
iwamot
PRO
4
670
Agentic Workflowという選択肢を考える
tkikuchi1002
1
490
生成AIで小説を書くためにプロンプトの制約や原則について学ぶ / prompt-engineering-for-ai-fiction
nwiizo
3
860
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
4 Signs Your Business is Dying
shpigford
184
22k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Rebuilding a faster, lazier Slack
samanthasiow
81
9.1k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
C-LIS CO., LTD.
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ $-*4$0 -5% "OESPJEΞϓϦ։ൃνϣοτσΩϧ Photo by
Koji MORIGUCHI (MORIGCHOWDER) ػցֶशͪΐͬͱͬͨ͜ͱ͋Γ·͢ Twitterͬͯ·ͤΜ
͘͞ΒͷػցֶशφΠτ 5FOTPS'MPXͰ /4'8ը૾ݕग़
5FOTPS'MPXʢ݄ൃදʣ ػցೳ͚ܭࢉϑϨʔϜϫʔΫ ࠷৽όʔδϣϯʢ݄ʣ
ษڧձΖ͏ͥ
(PPHMF%FWFMPQFS(SPVQ
IUUQTHEHLPCFEPPSLFFQFSKQFWFOUT
Πϯλʔωοτ͔Β Έͷը૾ΛࣗಈͰऩू͍ͨ͠
© ࠜઇΕ͍ ؟ ڸ ͬ ່
؟ڸ່ͬఆ 1 0
σʔληοτʢ݄࣌ʣ ؟ڸ່ͬɹຕ ඇ؟ڸ່ͬຕ ؟ڸ່ͬ ඇ؟ڸ່ͬ ޡݕग़ ؟ڸ່ͬ ඇ؟ڸ່ͬ
{ "generator": "Region Cropper", "file_name": "haruki_g17.png", "regions": [ { "probability":
1.0, "label": 2, "rect": { "left": 97.0, "top": 251.0, "right": 285.0, "bottom": 383.0 } }, { "probability": 1.0, "label": 2, "rect": { "left": 536.0, "top": 175.0, "right": 730.0, "bottom": 321.0 } } ] } Region Cropper: https://github.com/keiji/region_cropper
ߏ Downloader σʔληοτ Region + Label ઃఆ rsync
ཧͷߏ Downloader Face Detection Megane Detection ֬ೝɾमਖ਼ ೝࣝ݁Ռ ֶशʢ܇࿅ʣ
λΠϜϥΠϯ ϝσΟΞ σʔληοτ ֶशʢ܇࿅ʣ TensorFlow rsync
ઓͷաఔΛಉਓࢽʹ
͞·͟·ͳ՝ σʔληοτ͕(#Λ͑ͨ͋ͨΓ͔ΒϩʔΧϧͷಉظ͕ࠔʹɻ ྖҬʢ3FHJPOʣͷઃఆͱϥϕϧͷ༩૾Ҏ্ʹෛՙ͕ߴ͍ɻ
ը૾͕ສຕΛಥഁ σʔλཧ͕ࢸٸͷ՝ʹ
ඪΛ࠶֬ೝ
Πϯλʔωοτ͔Β Έͷ؟ڸ່ͬը૾ΛࣗಈͰऩू͍ͨ͠
Ҏલͷߏ Downloader σʔληοτ Region + Label ઃఆ rsync
ྖҬʴϥϕϧ
৽͍͠ߏ Downloader σʔληοτ Tagઃఆ
λά megane girl
؟ڸ່ͬผϞσϧ Ϟσϧ 1.00 0.00
%BUBTFU.BOBHFSGPS"OESPJE
σϞ
https://twitter.com/35s_00/status/930366666973757441
https://twitter.com/_meganeco
/4'8ʢ/PU4BGF'PS8PSLʣ
/4'8ը૾
͞·͟·ͳϦεΫ ࡞ۀͷϊΠζ ਫ਼ਆతͳෛՙ ๏తϦεΫ
/4'8ը૾ͷݕग़
ֶश༻σʔληοτʢ/4'8ʣ ਖ਼ྫɿ ෛྫɿ ← NSFWը૾
܇࿅ɾֶश
ڭࢣ༗Γֶश ◦ × Ϟσϧ 1.00 0.00
Ϟσϧͷߏ conv 3x3x64 stride 1 conv 3x3x64 stride 1
ReLU ReLU conv 3x3x128 stride 1 conv 3x3x128 stride 1 ReLU conv 3x3x256 stride 1 conv 3x3x256 stride 1 ReLU output 1 256x256x1 max_pool 2x2 stride 2 max_pool 2x2 stride 2 ReLU ReLU Sigmoid max_pool 2x2 stride 2 conv 3x3x64 stride 1 ReLU fc 768 ReLU bn bn bn
Sigmoid
# モデル定義 NUM_CLASSES = 1 NAME = 'model3' IMAGE_SIZE =
256 CHANNELS = 3 def prepare_layers(image, training=False): with tf.variable_scope('inference'): conv1 = tf.layers.conv2d(image, 64, [3, 3], [1, 1], padding='SAME', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv1_1') conv1 = tf.layers.conv2d(conv1, 64, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv1_2') conv1 = tf.layers.batch_normalization(conv1, trainable=training, name='bn_1')
conv2 = tf.layers.conv2d(pool1, 128, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu,
use_bias=False, trainable=training, name='conv2_1') conv2 = tf.layers.conv2d(conv2, 128, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv2_2') conv2 = tf.layers.batch_normalization(conv2, trainable=training, name='bn_2') pool2 = tf.layers.max_pooling2d(conv2, [2, 2], [2, 2])
conv3 = tf.layers.conv2d(pool2, 256, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu,
use_bias=False, trainable=training, name='conv4_1') conv3 = tf.layers.conv2d(conv3, 256, [3, 3], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=False, trainable=training, name='conv4_2') conv3 = tf.layers.batch_normalization(conv3, trainable=training, name='bn_4') pool3 = tf.layers.max_pooling2d(conv3, [2, 2], [2, 2]) conv = tf.layers.conv2d(pool3, 64, [1, 1], [1, 1], padding='VALID', activation=tf.nn.relu, use_bias=True, trainable=training, name='conv') return conv
def output_layers(prev, batch_size, keep_prob=0.8, training=False): flatten = tf.reshape(prev, [batch_size, -1])
fc1 = tf.layers.dense(flatten, 768, trainable=training, activation=tf.nn.relu, name='fc1') fc1 = tf.layers.dropout(fc1, rate=keep_prob, training=training) output = tf.layers.dense(fc1, NUM_CLASSES, trainable=training, activation=None, name='output') return output
def _loss(logits, labels, batch_size, positive_ratio): cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=logits)
loss = tf.reduce_mean(cross_entropy) return loss def _init_optimizer(learning_rate): return tf.train.AdamOptimizer(learning_rate=learning_rate) ޡࠩؔͱ࠷దԽΞϧΰϦζϜ
ֶशΛ্ख͘ਐΊΔ
ਖ਼ྫɾෛྫͷൺ ਖ਼ྫɿ ෛྫɿ ← NSFWը૾ NSFW
def _hard_negative_mining(loss, labels, batch_size): positive_count = tf.reduce_sum(labels) positive_count = tf.reduce_max((positive_count,
1)) negative_count = positive_count * HARD_SAMPLE_MINING_RATIO negative_count = tf.reduce_max((negative_count, 1)) negative_count = tf.reduce_min((negative_count, batch_size)) positive_losses = loss * labels negative_losses = loss - positive_losses top_negative_losses, _ = tf.nn.top_k(negative_losses, k=tf.cast(negative_count, tf.int32)) loss = (tf.reduce_sum(positive_losses / positive_count) + tf.reduce_sum(top_negative_losses / negative_count)) return loss )BSE/FHBUJWF.JOJOH
ֶशڥʢ͘͞ΒͷߴՐྗίϯϐϡʔςΟϯάʣ $169FPO$PSFʷ .FNPSZ(# 44%(# (F'PSDF(595*5"/9ʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ (F'PSDF(595Jʢ1BTDBMΞʔΩςΫνϟʣ(#ʷ
ֶश݅ ޡࠩؔަࠩΤϯτϩϐʔ ࠷దԽΞϧΰϦζϜ"EBN ֶश όοναΠζ
طଘͷσʔληοτʹਪʢJOGFSFODFʣΛ࣮ߦ Downloader σʔληοτ Tagઃఆ inference trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ
ਪ݁Ռ /4'8 Ұൠը૾ NSFW 8.6%
ֶश༻σʔληοτʢ/4'8ʣ ਖ਼ྫɿ ɹˠɹ ෛྫɿ ɹˠɹ
܇࿅ɾֶशʹ͔͔Δܭࢉ࣌ؒ
σϞ (16ɾ$16ͷൺֱ
$16ɾ(16ͷൺֱʢCBUDI4J[Fʣ 5*5"/9 TFDTUFQ 9FPO$PSF TFDTUFQ ࠓճͷϞσϧͷֶशʹ͍ͭͯ 5*5"/9ͷํ͕ഒ͍ʂ
$16ɾ(16ͷൺֱʢCBUDI4J[F ʣ 5*5"/9 (595J TFDTUFQ 9FPO$PSF TFDTUFQ
ࠓճͷϞσϧͷֶशʹ͍ͭͯ (16ʷͷํ͕ഒ͍ʂ
ࠓޙͷ՝
σʔληοταʔόʔͷ৴པੑ্
JOGFSFODFʢਪʣͷͨΊͷܭࢉࢿݯͷ֬อ Downloader σʔληοτ Tagઃఆ inference trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ
TAGS = [ 'original_art', 'nsfw', 'like', 'photo', 'illust', 'comic', 'face',
'girl', 'megane', ϥϕϧʢλάʣ 'school_uniform', 'blazer_uniform', 'sailor_uniform', 'gl', 'kemono', 'boy', 'bl', 'cat', 'dog', 'food', 'dislike', ]
.PWJEJVT
ਪΛ.PWJEJVTҠߦ Downloader σʔληοτ Tagઃఆ trainer ֶशࡁΈϞσϧ ֶश༻σʔληοτ inference
ΫϥεఆϞσϧ conv 3x3x64 stride 1 conv 3x3x64 stride 1
ReLU ReLU conv 3x3x128 stride 1 conv 3x3x128 stride 1 ReLU conv 3x3x256 stride 1 conv 3x3x256 stride 1 ReLU output 20 256x256x1 max_pool 2x2 stride 2 max_pool 2x2 stride 2 ReLU ReLU Sigmoid max_pool 2x2 stride 2 conv 3x3x64 stride 1 ReLU fc 768 ReLU bn bn bn
C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ 5IF"OESPJE4UVEJPJDPOJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪ͍ͯ͠·͢ɻ 5IF"OESPJESPCPUJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF https://speakerdeck.com/keiji/20171209-sakura-ml-night