Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphでマルチエージェントワークフローを構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Technology
0
500
LangGraphでマルチエージェントワークフローを構築
機械学習の社会実装勉強会第34回 (
https://machine-learning-workshop.connpass.com/event/316112/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
MCPが変えるAIとの協働
knishioka
1
160
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
110
DeepSeekを使ったローカルLLM構築
knishioka
0
170
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
210
LangGraphを使ったHuman in the loop
knishioka
0
260
AIシステムの品質と成功率を向上させるReflection
knishioka
0
47
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
170
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
200
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
560
Other Decks in Technology
See All in Technology
KubeCon + CloudNativeCon Europe 2025 Recap: The GPUs on the Bus Go 'Round and 'Round / Kubernetes Meetup Tokyo #70
pfn
PRO
0
170
テスト設計、逆から読むとおもしろい──仕様にない“望ましさ”の逆設計
mhlyc
0
200
Azure の裏側を支える SRE の世界
tsubasaxzzz
2
330
ゆるくはじめるSLI・SLO
yatoum
1
150
Microsoft Fabric のライセンスについて
ryomaru0825
2
3.5k
MCP でモノが動くとおもしろい/It is interesting when things move with MCP
bitkey
3
640
SwiftUIとMetalで簡単に作るレアカード風UI
stoticdev
1
110
SONiCで構築・運用する生成AI向けパブリッククラウドネットワーク
sonic
1
540
AWS LambdaをTypeScriptで動かして分かった、Node.jsのTypeScriptサポートの利点と課題
smt7174
1
140
WindowsでGenesisに挑戦した話
natsutan
0
130
KubeCon EU 2025 Recap - Kubernetes CRD Design for the Long Haul: Tips, Tricks, and Lessons Learned / Kubernetes Meetup Tokyo #70 / k8sjp70-crd-long-haul-recap
everpeace
0
110
GPU 클라우드 환경에서의 회복탄력적 AI 운영 : 훈련 및 추론을 위한 견고한 아키텍처와 전략
inureyes
PRO
0
140
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
Gamification - CAS2011
davidbonilla
81
5.3k
Unsuck your backbone
ammeep
671
58k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Embracing the Ebb and Flow
colly
85
4.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Bash Introduction
62gerente
613
210k
Raft: Consensus for Rubyists
vanstee
137
6.9k
The Pragmatic Product Professional
lauravandoore
33
6.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.3k
Side Projects
sachag
453
42k
Transcript
LangGraphで マルチエージェントワークフローを構築 2024/04/26 第34回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
はじめに 本日の発表内容 • LangGraph紹介 - LangChain基盤のライブラリ、言語モデル使用の多アク ターアプリケーション構築支援 • LangChain統合 -
LangChain Expression Language拡張、エージェント間の 協調計算 • プレゼンテーション目的 - LangGraph基本概念学習、マルチエージェント ワークフロー構築方法説明
マルチエージェントとは? 1. マルチエージェントシステム定義 - 複数の独立した エージェントが協力し合うシステム。 2. 独立性と協働性 - 各エージェントは独自のタスクと
責任を持ちつつ、共通の目標達成のために互いに情 報やリソースを共有。 3. 通信と協調 - エージェント間の効果的な通信と協調 により、より複雑な問題解決が可能に。
マルチエージェントの利点 1. 効率性の向上 - 複数のエージェントが特定のタスク に特化し、同時に異なる作業を進行することで全体 の処理速度が向上。 2. 複雑な問題の分割 -
大規模または複雑な問題を小さ な単位に分割し、それぞれのエージェントが一部を 担当することで問題全体の解決を容易に。 3. 拡張性と柔軟性 - 新たなエージェントの追加や既存 のエージェントの調整を通じて、システム全体の能 力を柔軟に調整可能。 4. 耐障害性の向上 - 一つのエージェントが停止または 障害を起こしても、他のエージェントがその機能を 代替またはサポートすることでシステム全体のダウ ンタイムを最小限に抑制。
LangGraphの主要機能 1. サイクルの管理 - LangGraphを使用して、ワークフ ローにおける繰り返し処理や循環的なタスクを効果 的に管理。 2. 状態管理 -
各エージェントの状態を追跡し、ワーク フロー全体の状態を一元管理。 3. LangChainとの統合 - LangChainの機能を拡張し、 より複雑なマルチエージェントシステムをサポー ト。 4. エッジとノードの制御 - グラフ内の各ノード(エー ジェント)とエッジ(通信パス)を詳細に設定し、 精密なワークフロー制御を実現。 5. 条件付きルーティング - 条件に基づいて動的にワー クフローの経路を変更する機能を提供。
実践的な例 • LangGraphの例 a. スーパーバイザーが各エージェントを管理 b. マルチエージェントで協力 c. 階層的エージェントチーム •
LangGraphのサンプルが充実している https://github.com/langchain-ai/langgraph/tree/main/examples
スーパーバイザーが各エージェントを管理 一つのスーパーバイザーエージェント が他のエージェントを管理し、タスク の進行状況を監督する例。異なるエー ジェントが独立してタスクを進行させ ながらも、全体の調整をスーパーバイ ザーが行う構成。
マルチエージェントで協力 複数のエージェントが協力してタスク を遂行する例。エージェントが情報を 共有しながら協力する様子を示すコー ドから派生。
階層的エージェント 複数レベルのエージェントが階層的に 協力する構造。上位のエージェントが 下位のエージェントの活動を指示し、 それぞれのエージェントが部分的なタ スクを担当。
デモ • LangGraphの簡単な使い方を紹介 • LangGraphを使った複雑なアプリケーション構築例は次回以降の勉強会で紹 介する予定