Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLflow × LLM 生成AI時代の実験管理とリスク低減
Search
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2025
Technology
0
120
MLflow × LLM 生成AI時代の実験管理とリスク低減
機械学習の社会実装勉強会第50回 (
https://machine-learning-workshop.connpass.com/event/366914/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
August 30, 2025
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
Claude Agent SDKで始める実践的AIエージェント開発
knishioka
0
58
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
92
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
83
ローカルLLMでファインチューニング
knishioka
0
1.5k
自作MCPサーバ入門
knishioka
0
61
成功と失敗の実像と生成AI時代の展望
knishioka
0
82
MCPが変えるAIとの協働
knishioka
1
230
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
320
DeepSeekを使ったローカルLLM構築
knishioka
0
250
Other Decks in Technology
See All in Technology
Rubyist入門: The Way to The Timeless Way of Programming
snoozer05
PRO
7
520
AIと自動化がもたらす業務効率化の実例: 反社チェック等の調査・業務プロセス自動化
enpipi
0
670
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
4
1.6k
QAを"自動化する"ことの本質
kshino
1
140
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
2
860
新しい風。SolidFlutterで実現するシンプルな状態管理
zozotech
PRO
0
120
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
3
2k
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
2
500
巨大モノリスのリプレイス──機能整理とハイブリッドアーキテクチャで挑んだ再構築戦略
zozotech
PRO
0
130
[CV勉強会@関東 ICCV2025] WoTE: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
shinkyoto
0
280
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
4
1.6k
なぜブラウザで帳票を生成したいのか どのようにブラウザで帳票を生成するのか
yagisanreports
0
140
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Facilitating Awesome Meetings
lara
57
6.6k
How STYLIGHT went responsive
nonsquared
100
5.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Why Our Code Smells
bkeepers
PRO
340
57k
Building an army of robots
kneath
306
46k
Code Reviewing Like a Champion
maltzj
527
40k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Transcript
MLflow × LLM 生成AI 時代の実験管理とリスク低減 なぜ今「実験管理」が重要なのか 西岡 賢一郎 Data Informed
CEO / D-stats CTO 機械学習の社会実装勉強会 第50 回 2025 年8 月30 日 MLflow
背景:生成AI 開発の課題 LLM 活用は急速に進展中 Chatbot 、RAG 、要約など様々なユースケースで活用拡大 しかし実際の開発現場では…
再現性がない(同じ結果を再現できない) 本番に何が動いているのか不明確 コストや品質がコントロール不能 PM 視点ではリスクが高い 予測不能な品質変動、説明責任の難しさ、コスト管理の困難さ MLflow 2 / 11
典型的な困りごと 「どのプロンプトで精度が出たか忘れた」 試行錯誤の過程が記録されず、効果的だったプロンプトを再現できない 「Embedding モデルを変えたら結果が良くなった?悪くなった?」 設定変更の効果が客観的に比較・検証できない 「本番で走っているのはどのバージョン?」
環境間の差異が不明確で、トラブル発生時の原因特定が困難 「意思決定の根拠が残らない」 なぜその設定やモデルを採用したのか、後から検証できない MLflow 3 / 11
MLflow とは? 機械学習のライフサイクル管理プラットフォーム オープンソースソフトウェア(OSS )として広く使われている もともとML 用 →
今はLLM にも対応 生成AI アプリケーション開発にも活用できるように機能拡張 主な機能 Tracking :実験ログの記録と可視化 Model Registry :モデルのバージョン管理 Evaluation & Monitoring :品質検証と監視 Tracing :複雑な処理フローの可視化 MLflow 4 / 11
LLM 時代のMLflow 活用ポイント Tracking :実験ログの自動記録 プロンプト、パラメータ設定、生成結果、コスト、精度を自動で記録・比較可能 Prompt UI
/ Registry :プロンプト管理 プロンプトの編集・共有・バージョン管理を一元化し、最適プロンプトを組織で共有 Evaluation :品質の数値比較 LLM-as-a-Judge, Human Feedback など多様な評価方法で品質を客観的に測定 Tracing :複雑フローの可視化 RAG など複雑なアプリケーションフローを分解・可視化し、ボトルネックを特定 MLflow 5 / 11
Before / After MLflow (RAG アプリ例) Before 精度改善が偶然に依存
設定変更の効果が不明 本番と検証環境が不一致 After 実験履歴から最適条件を選択 コスト・精度を可視化してPM が判断 Production モデルをRegistry で固定化 MLflow 6 / 11
デモで見るMLflow Jupyter Notebook → MLflow UI 簡単な実験コードからMLflow UI で詳細なログ情報を確認
自動記録される実験情報 プロンプト内容とパラメータ設定 実行結果とモデル出力 実行コストやAPI 使用量 UI の比較機能 複数のRun を並べて精度やコストを比較、最適な設定を選定可能 高度な機能 Prompt Engineering UI やTracing 可視化による複雑なフローの把握 MLflow 7 / 11
PM/ 開発者が得られる価値 透明性 本番モデルとその選定根拠を明確に説明可能 再現性 同じ実験を誰でも再現できる環境と条件を保証 リスク低減
精度低下・コスト増を早期に検知し対策可能 協調 PM ・エンジニア・研究者が同じ画面を見て議論できる共通基盤 MLflow 8 / 11
運用イメージ → → → ↩
開発フェーズ MLflow Tracking で実験履歴を残す プロンプト、パラメータ、出力結果、メトリクスを自動記録 検証フェーズ MLflow Evaluation で品質比較 LLM-as-a-Judge などを活用した客観的な品質評価 本番フェーズ MLflow Registry でモデルを管理 Staging → Production へのステージング管理と安全なデプロイ 改善フェーズ MLflow Tracing でボトルネックを特定 複雑なRAG や処理フローの可視化とパフォーマンス分析 MLflow 9 / 11
導入の第一歩 難しく考えなくてOK MLflow は段階的に導入でき、小さく始めて徐々に拡張可能です 「まずは実験ログを残す」ことから始める 最初はTracking のみの利用から、環境構築は最小限でOK
ローカル環境でもすぐ利用可能 pip install mlflow だけでインストール完了、コード数行で記録開始 チーム利用への発展 リモートサーバやクラウドでTracking UI を共有し、チーム全体で実験を可視化 MLflow 10 / 11
まとめ LLM 開発はスピードと同時に管理と再現性が必須 実験と改善の記録がなければ持続的な品質向上は困難 MLflow は「実験ノート+品質保証+本番管理」を一体化 従来の個別ツールをシームレスに統合し、開発効率を向上
RAG や要約など幅広いアプリでリスク低減に貢献 複雑なワークフローの可視化と品質評価を容易に実現 結論:LLM 活用にMLflow は欠かせない基盤 透明性・再現性・説明責任を担保し、生成AI 時代の信頼できる開発を実現 MLflow 11 / 11