Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
M&A戦略を支えるデータマネジメント (MIDAS Tech Study #16 GENDA ...
Search
kommy
April 26, 2024
Technology
1
420
M&A戦略を支えるデータマネジメント (MIDAS Tech Study #16 GENDA Komiyama)
こちらのイベントの登壇資料
https://midastech.connpass.com/event/309991/
kommy
April 26, 2024
Tweet
Share
More Decks by kommy
See All by kommy
Snowflakeでわからないことがあったときの調べ方
kommy339
1
160
Other Decks in Technology
See All in Technology
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
生成AIのガバナンスの全体像と現実解
fnifni
1
190
Qiita埋め込み用スライド
naoki_0531
0
5.1k
C++26 エラー性動作
faithandbrave
2
730
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
530
20241220_S3 tablesの使い方を検証してみた
handy
4
400
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
170
Snowflake女子会#3 Snowpipeの良さを5分で語るよ
lana2548
0
230
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
100
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
110
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
420
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
A Tale of Four Properties
chriscoyier
157
23k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Optimising Largest Contentful Paint
csswizardry
33
3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
Transcript
M&A戦略を支える データマネジメント 2024/04/25 GENDA 小宮山紘平 1
2 自己紹介 小宮山 紘平 / こみぃ / kohei komiyama X(Twitter):
@kommy_jp Facebook: kohei.komiyama Blog: https://zenn.dev/kommy339 著書: https://amzn.to/3PuM5S0 担当 データに関してなんでもやる 最近はデータ以外でもなんでも やってる データチームマネージャー 所属 株式会社GENDA マジック・ザ・ギャザリング 筋トレ 脱出ゲーム 趣味
© GENDA Inc. 世界中の 人々の人生を より楽しく Aspiration 人が人らしく生きるために「 楽しさ」は不可欠と考え、 私たちは「世界中の人々の人生をより楽しく
」という Aspiration(アスピレーション=大志)を掲げています。
© GENDA Inc. GENDAグループ概観
© GENDA Inc. 各社の開発支援 GENDAテックメンバー 正社員 + 業務委託 正社員 +
業務委託 正社員 + 業務委託 正社員 + 業務委託 純粋持株会社のGENDAにテックメンバーが所属 各社に所属しないことで横断的に開発可能な状態にする 技術スタック・ツール統一を推進 テクノロジー組織概要 etc. 正社員 + 業務委託 プロダクト開発部 プロダクトマーケティング部 IT戦略部
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 6
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 7
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
8 GENDAの事業構造をデータの視点から見ると?
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
9 GENDAの事業構造をデータの視点から見ると? とてもチャレンジング!!!
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
10 GENDAの事業構造をデータの視点から見ると? とてもチャレンジング!!! こういう展開でこそ 俺は燃えるやつだったはずだ・・・!!
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 11
• 各グループ会社ごとにデータ基盤を構築 • 各種データソース -> Snowflake -> dbt -> BIツール
or ReverseETL • BIツール ◦ Redash ◦ 各グループ会社の既存のBIツール • データ・アプリケーション ◦ Streamlit ◦ 手の込んだ開発を行ったツール • MWAA • Git 12 GENDAのデータ基盤
13 例:GENDA GiGO Entertainmentのデータ基盤 データの一次加工 データ分析作業 MLなどで利用 フロー管理 IaC 運用ツール
データ・アプリケーション
• グループ会社ごとに分けているのはセキュリティ等の事情 • データ基盤は横展開を意識してシンプルな設計思想 ◦ とにかく一回Snowflakeに集めてdbtで加工してから使う • フローはMWAAで管理してGitでバージョン管理 ◦ 横展開できる
• BIツールはRedashを提供しつつ既存のツールと両立 ◦ 各社の既存の運用を尊重 • 運用に最適化されたツールを独自に開発 ◦ Streamlit or 手の込んだ開発 ◦ この次の章のお話 14 GENDAのデータ基盤がこうなっている理由
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 15
• データエンジニア ◦ データ基盤を構築する ◦ ReverseETLや運用ツールの開発 • データマネージャー ◦ データの品質と正しく使われることを担保する
◦ データマートの作成 ◦ ダッシュボードの作成 • データサイエンティスト ◦ データサイエンス全般を担当 16 データチームの3つの役割
• データの品質及び正しく使われることを担保する役割 ◦ 上記を達成するための基盤と体制を整備する ◦ ビジネス職と相談してデータマートやダッシュボードの作成 を行う • データエンジニアやデータサイエンティストとは違う能力が求め られる
◦ 兼任で行うにはあまりにも大変なので専門分化させるべき 17 特徴① データマネジメント担当の設置
• 事業ごとにまちまちなデータ事情を柔軟に吸収して横展開できる 18 特徴② シンプルな基盤設計にする データの一次加工 各社の事情に 合わせて活用 各社の事情に 合わせたパイプライン
ここだけ共通化
• データにまつわる事情は各グループ会社でまちまち • まずは信頼関係を築く必要がある ◦ データ活用は徳 19 特徴③ 徹底的なヒアリングから始める
• データは使われないと意味がない ◦ BIツールとデータマートを提供するだけでは使われない • 想定通りに使ってくれないとむしろリスクになるケースも • じゃあ運用チームが望むそのものを作りましょうという発想 ◦ 最初は手の込んだ開発をしてGiGO
NAVIを作った ◦ 最近はStreamlitでデータチーム単独で開発している 20 特徴④ データ・アプリケーションの提供 手の込んだものが作れるが 開発チームが必要 データチーム単独で Pythonで開発可能
• データマネジメントの専門職を設置する • シンプルな基盤設計にする • 徹底的にヒアリングして現場と協同する • アプリケーションを提供してデータ活用の最終地点までサポート 21 GENDAのデータマネジメント戦略のまとめ
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 22
23 グループ間シナジーを生むデータ活用(将来の展望)
• 事業間でデータ連携を行う仕組みの整備 ◦ 共通のマスターデータ ◦ 顧客データを横断で扱う仕組み • MAツールの導入 24 グループ間シナジーを生むデータ活用のための仕込み
データ
エンタメレコメンドシステム 25 データサイエンスによる貢献 現在 (同一エンタメ内) 未来 (異種エンタメ間)
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 26
• データマネジメントを広い概念と捉える ◦ データ基盤を作るだけではない ◦ データマートを作るだけでもない ◦ 事業を理解し、データ基盤とデータマートを構築し、活用の ためのツールを作るまでがデータマネジメント •
丁寧さとシンプルさを大切に ◦ 現場との丁寧なコミュニケーションがデータ活用の鍵 ◦ データ基盤はシンプルイズベスト 27 GENDAのデータマネジメント
最後に
We are hiring!!! 29 GENDA Creators Blog メンバーの人となりはこちら 株式会社GENDA 採用情報
募集要項はこちら 公式note https://blog.genda.jp/creators/ https://note.com/genda_jp/ https://genda.jp/careers/
None