Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
M&A戦略を支えるデータマネジメント (MIDAS Tech Study #16 GENDA ...
Search
kommy
April 26, 2024
Technology
1
510
M&A戦略を支えるデータマネジメント (MIDAS Tech Study #16 GENDA Komiyama)
こちらのイベントの登壇資料
https://midastech.connpass.com/event/309991/
kommy
April 26, 2024
Tweet
Share
More Decks by kommy
See All by kommy
Snowflakeでわからないことがあったときの調べ方
kommy339
1
180
Other Decks in Technology
See All in Technology
コスト最適重視でAurora PostgreSQLのログ分析基盤を作ってみた #jawsug_tokyo
non97
0
390
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
140
SnowflakeとDatabricks両方でRAGを構築してみた
kameitomohiro
1
420
品質文化を支える小さいクロスファンクショナルなチーム / Cross-functional teams fostering quality culture
toma_sm
0
120
QA/SDETの現在と、これからの挑戦
imtnd
0
140
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
7
970
React ABC Questions
hirotomoyamada
0
490
PagerDuty×ポストモーテムで築く障害対応文化/Building a culture of incident response with PagerDuty and postmortems
aeonpeople
1
320
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
530
SDカードフォレンジック
su3158
1
630
【Λ(らむだ)】最近のアプデ情報 / RPALT20250422
lambda
0
110
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
690
Featured
See All Featured
A better future with KSS
kneath
239
17k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.8k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Done Done
chrislema
183
16k
Automating Front-end Workflow
addyosmani
1369
200k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Code Reviewing Like a Champion
maltzj
522
40k
Docker and Python
trallard
44
3.3k
Transcript
M&A戦略を支える データマネジメント 2024/04/25 GENDA 小宮山紘平 1
2 自己紹介 小宮山 紘平 / こみぃ / kohei komiyama X(Twitter):
@kommy_jp Facebook: kohei.komiyama Blog: https://zenn.dev/kommy339 著書: https://amzn.to/3PuM5S0 担当 データに関してなんでもやる 最近はデータ以外でもなんでも やってる データチームマネージャー 所属 株式会社GENDA マジック・ザ・ギャザリング 筋トレ 脱出ゲーム 趣味
© GENDA Inc. 世界中の 人々の人生を より楽しく Aspiration 人が人らしく生きるために「 楽しさ」は不可欠と考え、 私たちは「世界中の人々の人生をより楽しく
」という Aspiration(アスピレーション=大志)を掲げています。
© GENDA Inc. GENDAグループ概観
© GENDA Inc. 各社の開発支援 GENDAテックメンバー 正社員 + 業務委託 正社員 +
業務委託 正社員 + 業務委託 正社員 + 業務委託 純粋持株会社のGENDAにテックメンバーが所属 各社に所属しないことで横断的に開発可能な状態にする 技術スタック・ツール統一を推進 テクノロジー組織概要 etc. 正社員 + 業務委託 プロダクト開発部 プロダクトマーケティング部 IT戦略部
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 6
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 7
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
8 GENDAの事業構造をデータの視点から見ると?
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
9 GENDAの事業構造をデータの視点から見ると? とてもチャレンジング!!!
• 日々、大小様々な事業がM&Aによってグループ入りする • データ基盤やデータ活用レベルもまちまち • 事業によって業界全体のデータ活用レベルも大きく違う • 事業がオフラインであることが現状では多い ◦ オフラインはオンラインよりも遥かにデータが取りにくい
10 GENDAの事業構造をデータの視点から見ると? とてもチャレンジング!!! こういう展開でこそ 俺は燃えるやつだったはずだ・・・!!
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 11
• 各グループ会社ごとにデータ基盤を構築 • 各種データソース -> Snowflake -> dbt -> BIツール
or ReverseETL • BIツール ◦ Redash ◦ 各グループ会社の既存のBIツール • データ・アプリケーション ◦ Streamlit ◦ 手の込んだ開発を行ったツール • MWAA • Git 12 GENDAのデータ基盤
13 例:GENDA GiGO Entertainmentのデータ基盤 データの一次加工 データ分析作業 MLなどで利用 フロー管理 IaC 運用ツール
データ・アプリケーション
• グループ会社ごとに分けているのはセキュリティ等の事情 • データ基盤は横展開を意識してシンプルな設計思想 ◦ とにかく一回Snowflakeに集めてdbtで加工してから使う • フローはMWAAで管理してGitでバージョン管理 ◦ 横展開できる
• BIツールはRedashを提供しつつ既存のツールと両立 ◦ 各社の既存の運用を尊重 • 運用に最適化されたツールを独自に開発 ◦ Streamlit or 手の込んだ開発 ◦ この次の章のお話 14 GENDAのデータ基盤がこうなっている理由
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 15
• データエンジニア ◦ データ基盤を構築する ◦ ReverseETLや運用ツールの開発 • データマネージャー ◦ データの品質と正しく使われることを担保する
◦ データマートの作成 ◦ ダッシュボードの作成 • データサイエンティスト ◦ データサイエンス全般を担当 16 データチームの3つの役割
• データの品質及び正しく使われることを担保する役割 ◦ 上記を達成するための基盤と体制を整備する ◦ ビジネス職と相談してデータマートやダッシュボードの作成 を行う • データエンジニアやデータサイエンティストとは違う能力が求め られる
◦ 兼任で行うにはあまりにも大変なので専門分化させるべき 17 特徴① データマネジメント担当の設置
• 事業ごとにまちまちなデータ事情を柔軟に吸収して横展開できる 18 特徴② シンプルな基盤設計にする データの一次加工 各社の事情に 合わせて活用 各社の事情に 合わせたパイプライン
ここだけ共通化
• データにまつわる事情は各グループ会社でまちまち • まずは信頼関係を築く必要がある ◦ データ活用は徳 19 特徴③ 徹底的なヒアリングから始める
• データは使われないと意味がない ◦ BIツールとデータマートを提供するだけでは使われない • 想定通りに使ってくれないとむしろリスクになるケースも • じゃあ運用チームが望むそのものを作りましょうという発想 ◦ 最初は手の込んだ開発をしてGiGO
NAVIを作った ◦ 最近はStreamlitでデータチーム単独で開発している 20 特徴④ データ・アプリケーションの提供 手の込んだものが作れるが 開発チームが必要 データチーム単独で Pythonで開発可能
• データマネジメントの専門職を設置する • シンプルな基盤設計にする • 徹底的にヒアリングして現場と協同する • アプリケーションを提供してデータ活用の最終地点までサポート 21 GENDAのデータマネジメント戦略のまとめ
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 22
23 グループ間シナジーを生むデータ活用(将来の展望)
• 事業間でデータ連携を行う仕組みの整備 ◦ 共通のマスターデータ ◦ 顧客データを横断で扱う仕組み • MAツールの導入 24 グループ間シナジーを生むデータ活用のための仕込み
データ
エンタメレコメンドシステム 25 データサイエンスによる貢献 現在 (同一エンタメ内) 未来 (異種エンタメ間)
目次 • GENDAの事業構造上の特徴 • GENDAのデータ基盤 • グループ会社の状況に合わせたデータマネジメント • 様々なエンタメを支えるデータマネジメント •
総括 26
• データマネジメントを広い概念と捉える ◦ データ基盤を作るだけではない ◦ データマートを作るだけでもない ◦ 事業を理解し、データ基盤とデータマートを構築し、活用の ためのツールを作るまでがデータマネジメント •
丁寧さとシンプルさを大切に ◦ 現場との丁寧なコミュニケーションがデータ活用の鍵 ◦ データ基盤はシンプルイズベスト 27 GENDAのデータマネジメント
最後に
We are hiring!!! 29 GENDA Creators Blog メンバーの人となりはこちら 株式会社GENDA 採用情報
募集要項はこちら 公式note https://blog.genda.jp/creators/ https://note.com/genda_jp/ https://genda.jp/careers/
None