Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionを用いてフォロワーの男女比を出す
Search
Kazuki Ohashi
February 02, 2018
Technology
1
2.9k
Amazon Rekognitionを用いてフォロワーの男女比を出す
Amazon RekogntionとFace APIを比べながら、フォロワーの男女比を出してみました。
Kazuki Ohashi
February 02, 2018
Tweet
Share
More Decks by Kazuki Ohashi
See All by Kazuki Ohashi
larave_vue_graphql_supplementation
kzkohashi
1
850
Introduction to using GraphQL for a bit
kzkohashi
0
220
フォロワーがどの雑誌に興味があるのか可視化してみる / magazine-score
kzkohashi
0
670
Laravelを始めて DDDを実践するまで
kzkohashi
2
1.9k
Other Decks in Technology
See All in Technology
Post-AIコーディング時代のエンジニア生存戦略
shinoyu
0
280
メタプログラミングRuby問題集の活用
willnet
2
790
コード1ミリもわからないけど Claude CodeでFigjamプラグインを作った話
abokadotyann
1
160
自己的售票系統自己做!
eddie
0
440
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
130
What's the recommended Flutter architecture
aakira
3
1.4k
「O(n log(n))のパフォーマンス」の意味がわかるようになろう
dhirabayashi
0
130
クレジットカードの不正を防止する技術
yutadayo
16
7.2k
手を動かしながら学ぶデータモデリング - 論理設計から物理設計まで / Data modeling
soudai
PRO
22
4.9k
CDKの魔法を少し解いてみる ― synth・build・diffで覗くIaCの裏側 ―
takahumi27
1
150
CodexでもAgent Skillsを使いたい
gotalab555
9
4.5k
Spring Boot利用を前提としたJavaライブラリ開発方法の提案
kokihoshihara
PRO
2
190
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Language of Interfaces
destraynor
162
25k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Art of Programming - Codeland 2020
erikaheidi
56
14k
How STYLIGHT went responsive
nonsquared
100
5.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Why Our Code Smells
bkeepers
PRO
340
57k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Transcript
"NB[PO3FLPHOJUJPOΛ༻͍ͯ ϑΥϩϫʔͷஉঁൺΛग़͢ WEBΤϯδχΞษڧձ #05 େڮ Ұथ @kzkohashi
େڮҰथ!L[LPIBTIJ ΠϯϑϧΤϯαʔϚʔέςΟϯά αʔόαΠυ ϑϩϯτத৺ झຯΧϨʔϥΠε
ϑΥϩϫʔͷใ ݟͨ͜ͱ͋Γ·͔͢ʁ
4/4ͷϑΥϩϫʔใ *OTUBHSBNΠϯαΠτ 5XJUUFS"OBMZUJDT
ଞਓͷΓ͍ͨʂ
Ͳ͏ΕͰ͖ΔͩΖ͏ʁ ϑΥϩϫʔ ϑΥϩϫʔ
إೝࣝΛͬͯஉঁྨਪʁ w จࣈϕʔεͰͷஉঁྨਪͦ͠͏ w 4/4ʹΑͬͯจࣈ͕গͳ͍߹͕͋Δ w ϓϩϑΟʔϧը૾͔Βஉ͔ঁ͔ͳΜͱ͘ͳ͘ Θ͔Γͦ͏
બఆख๏ͷௐࠪ ֎෦"1* ࣗલ 'BDF"1* $MPVE7JTPO 7JTVBM3FDPHOJUJPO 0QFO#3 ࣌ؒͱ͑Δ͓ۚΛߟ͑ͯ֎෦"1*͔Βબఆʂ "NB[PO3FLPHOJUJPO
͜Μͳײ͡ 'BDF"1* "NB[PO3FDPHOJUJPO
બఆൺΔ w ຕͷ4/4ͷϓϩϑը૾Λ༻ҙ w உੑຕ ঁੑຕ ͦͷଞຕ w 'BDF"1*ͱ"NB[PO3FLPHOJUJPOͰൺֱ ͋ΔํͷૉΒ͍͠ϒϩάͰࣝผ͕͔ͳΓΑ͔ͬͨʂ
ൺͨ݁Ռ ਖ਼ छྨ உੑ ঁੑ ͦͷଞ Amazon Rekognition 112(68%) 174(75%)
512(92%) Face API 75(46%) 121(52%) 522(94%) ୯७ͳਖ਼"NB[PO3FLPHOJUJPO͕ଟ͍
ൺͨ݁Ռʢޡʣ छྨ ঁੑ Amazon Rekognition 13 Face API 5 छྨ
உੑ Amazon Rekognition 5 Face API 3 ͕͑ঁੑͷը૾ ͕͑உੑͷը૾ ޡ'BDF"1*ͷ΄͏͕গͳͦ͏
'BDF"1* "NB[PO3FLPHOJUJPO ޱͳͲݟ͑ͳ͍ͱ'BDF"1*ݕग़ͮ͠Β͍ʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO 4/4ը૾ਅਖ਼໘Λ͋·Γ͍ͯͳ͍ͨΊݕग़ʹ͕ࠩग़ͨʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO ࣝผޭ͚ͨ͠Ͳ Ұਓ͚ͩݕग़ ೋਓݕग़͚ͨ͠Ͳ ࣝผࣦഊ ݕग़ͪ͠Ό͑'BDF"1*ڧ͍ɾɾɾ
'BDF"1* "NB[PO3FLPHOJUJPO ͜͏͍͏͜ͱ͋Δʢসʣ ࣝผޭ͚ͨ͠Ͳ ͲͪΒঁੑͱޡೝࣝ
બఆ·ͱΊ w 'BDF"1*ͷ΄͏͕ਫ਼ྑͦ͞͏ w ͨͩɺޱͱ͔ӅΕͨΓ͍ͯ͠Δ4/4ը૾ͷݕग़ѱ͗͢Δ w ࣝผͱݕग़ͷόϥϯεͰ"NB[PO3FLPHOJUJPOʹܾఆ ʢ୯७ͳਖ਼ͳΒΑ͔ͬͨʣ "NB[PO3FLPHOJUJPO
"NB[PO3FLPHOJUJPOͱ w "84͕ఏڙ͍ͯ͠Δɺը૾ࣝผαʔϏε w إೝ͚ࣝͩͰͳ͘ɺΦϒδΣΫτʢؠͱ͔ʣͷݕग़ ൺֱͱ͔Ͱ͖Δ w ͍͍ͳͱࢥͬͨͷɺஉঁࣝผʹ৴པ͕͍͍ͭͯΔ ͍·͞Β
(FOEFS\ 7BMVF.BMF $POpEFODF ^ ৴པ ࣗͨͪͷαʔϏεʹԠͯ͡ᮢܾΊΕΔ
ΞʔΩςΫνϟ ϓϩϑը૾ μϯϩʔυ ϑΥϩϫʔใ σϑΥϧτը૾͔ ൱͔ Ξοϓϩʔυ ˞ ˞͓͍ۚͬͨͳ͍ͷͰɺσϑΥϧτը૾ͷਓল͍ͯΔ
IUUQL[LPIBTIJIBUFOBCMPHDPNFOUSZ ʢQZUIPOΛͬͯ03#ͱ1FSDFQUVBM)BTIͰը૾ͷྨࣅΛൺͯΈΔ ৴པͷᮢ உঁใ "NB[PO3FLPHOJUJPO KTPO
݁Ռ ͑ ঁੑ உੑ ࠓճͷγεςϜ ˞ ঁੑ உੑ ˞αϯϓϦϯάϥϯμϜͰׂ̍ఔ
·ͱΊ w ը૾ࣝผ"1*৭ʑ͋Δ w ༻్ʹ߹Θͤͯࣝผͱݕग़ͷόϥϯεͰબ w ϓϩϑը૾͚ͩͰஉঁൺͱΕͨ
͓·͚ ͜ͷൺʹຊʹͳΔͷ͔ࢼͨ͠ छྨ உੑ ঁੑ ͦͷଞ ࣗͰ͑Δ 65%(97) 35%(52) 12
Amazon Rekognition 46%(36) 54%(42) 22 Face API 51%(21) 49%(20) 121 ͳΔ΄Ͳɾɾɾ