Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionを用いてフォロワーの男女比を出す
Search
Kazuki Ohashi
February 02, 2018
Technology
1
2.9k
Amazon Rekognitionを用いてフォロワーの男女比を出す
Amazon RekogntionとFace APIを比べながら、フォロワーの男女比を出してみました。
Kazuki Ohashi
February 02, 2018
Tweet
Share
More Decks by Kazuki Ohashi
See All by Kazuki Ohashi
larave_vue_graphql_supplementation
kzkohashi
1
850
Introduction to using GraphQL for a bit
kzkohashi
0
220
フォロワーがどの雑誌に興味があるのか可視化してみる / magazine-score
kzkohashi
0
670
Laravelを始めて DDDを実践するまで
kzkohashi
2
1.9k
Other Decks in Technology
See All in Technology
事業開発におけるDify活用事例
kentarofujii
5
1.4k
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
130
CREが作る自己解決サイクルSlackワークフローに組み込んだAIによる社内ヘルプデスク改革 #cre_meetup
bengo4com
0
320
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
240
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.8k
Observability — Extending Into Incident Response
nari_ex
1
150
NLPコロキウム20251022_超効率化への挑戦: LLM 1bit量子化のロードマップ
yumaichikawa
2
410
ソフトウェアエンジニアの生成AI活用と、これから
lycorptech_jp
PRO
0
890
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
1
170
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
2
640
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
160
ハノーファーメッセ2025で見た生成AI活用ユースケース.pdf
hamadakoji
0
450
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Leading Effective Engineering Teams in the AI Era
addyosmani
7
600
Done Done
chrislema
185
16k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
RailsConf 2023
tenderlove
30
1.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Transcript
"NB[PO3FLPHOJUJPOΛ༻͍ͯ ϑΥϩϫʔͷஉঁൺΛग़͢ WEBΤϯδχΞษڧձ #05 େڮ Ұथ @kzkohashi
େڮҰथ!L[LPIBTIJ ΠϯϑϧΤϯαʔϚʔέςΟϯά αʔόαΠυ ϑϩϯτத৺ झຯΧϨʔϥΠε
ϑΥϩϫʔͷใ ݟͨ͜ͱ͋Γ·͔͢ʁ
4/4ͷϑΥϩϫʔใ *OTUBHSBNΠϯαΠτ 5XJUUFS"OBMZUJDT
ଞਓͷΓ͍ͨʂ
Ͳ͏ΕͰ͖ΔͩΖ͏ʁ ϑΥϩϫʔ ϑΥϩϫʔ
إೝࣝΛͬͯஉঁྨਪʁ w จࣈϕʔεͰͷஉঁྨਪͦ͠͏ w 4/4ʹΑͬͯจࣈ͕গͳ͍߹͕͋Δ w ϓϩϑΟʔϧը૾͔Βஉ͔ঁ͔ͳΜͱ͘ͳ͘ Θ͔Γͦ͏
બఆख๏ͷௐࠪ ֎෦"1* ࣗલ 'BDF"1* $MPVE7JTPO 7JTVBM3FDPHOJUJPO 0QFO#3 ࣌ؒͱ͑Δ͓ۚΛߟ͑ͯ֎෦"1*͔Βબఆʂ "NB[PO3FLPHOJUJPO
͜Μͳײ͡ 'BDF"1* "NB[PO3FDPHOJUJPO
બఆൺΔ w ຕͷ4/4ͷϓϩϑը૾Λ༻ҙ w உੑຕ ঁੑຕ ͦͷଞຕ w 'BDF"1*ͱ"NB[PO3FLPHOJUJPOͰൺֱ ͋ΔํͷૉΒ͍͠ϒϩάͰࣝผ͕͔ͳΓΑ͔ͬͨʂ
ൺͨ݁Ռ ਖ਼ छྨ உੑ ঁੑ ͦͷଞ Amazon Rekognition 112(68%) 174(75%)
512(92%) Face API 75(46%) 121(52%) 522(94%) ୯७ͳਖ਼"NB[PO3FLPHOJUJPO͕ଟ͍
ൺͨ݁Ռʢޡʣ छྨ ঁੑ Amazon Rekognition 13 Face API 5 छྨ
உੑ Amazon Rekognition 5 Face API 3 ͕͑ঁੑͷը૾ ͕͑உੑͷը૾ ޡ'BDF"1*ͷ΄͏͕গͳͦ͏
'BDF"1* "NB[PO3FLPHOJUJPO ޱͳͲݟ͑ͳ͍ͱ'BDF"1*ݕग़ͮ͠Β͍ʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO 4/4ը૾ਅਖ਼໘Λ͋·Γ͍ͯͳ͍ͨΊݕग़ʹ͕ࠩग़ͨʁ ݕग़ࣦഊ ݕग़ޭ
'BDF"1* "NB[PO3FLPHOJUJPO ࣝผޭ͚ͨ͠Ͳ Ұਓ͚ͩݕग़ ೋਓݕग़͚ͨ͠Ͳ ࣝผࣦഊ ݕग़ͪ͠Ό͑'BDF"1*ڧ͍ɾɾɾ
'BDF"1* "NB[PO3FLPHOJUJPO ͜͏͍͏͜ͱ͋Δʢসʣ ࣝผޭ͚ͨ͠Ͳ ͲͪΒঁੑͱޡೝࣝ
બఆ·ͱΊ w 'BDF"1*ͷ΄͏͕ਫ਼ྑͦ͞͏ w ͨͩɺޱͱ͔ӅΕͨΓ͍ͯ͠Δ4/4ը૾ͷݕग़ѱ͗͢Δ w ࣝผͱݕग़ͷόϥϯεͰ"NB[PO3FLPHOJUJPOʹܾఆ ʢ୯७ͳਖ਼ͳΒΑ͔ͬͨʣ "NB[PO3FLPHOJUJPO
"NB[PO3FLPHOJUJPOͱ w "84͕ఏڙ͍ͯ͠Δɺը૾ࣝผαʔϏε w إೝ͚ࣝͩͰͳ͘ɺΦϒδΣΫτʢؠͱ͔ʣͷݕग़ ൺֱͱ͔Ͱ͖Δ w ͍͍ͳͱࢥͬͨͷɺஉঁࣝผʹ৴པ͕͍͍ͭͯΔ ͍·͞Β
(FOEFS\ 7BMVF.BMF $POpEFODF ^ ৴པ ࣗͨͪͷαʔϏεʹԠͯ͡ᮢܾΊΕΔ
ΞʔΩςΫνϟ ϓϩϑը૾ μϯϩʔυ ϑΥϩϫʔใ σϑΥϧτը૾͔ ൱͔ Ξοϓϩʔυ ˞ ˞͓͍ۚͬͨͳ͍ͷͰɺσϑΥϧτը૾ͷਓল͍ͯΔ
IUUQL[LPIBTIJIBUFOBCMPHDPNFOUSZ ʢQZUIPOΛͬͯ03#ͱ1FSDFQUVBM)BTIͰը૾ͷྨࣅΛൺͯΈΔ ৴པͷᮢ உঁใ "NB[PO3FLPHOJUJPO KTPO
݁Ռ ͑ ঁੑ உੑ ࠓճͷγεςϜ ˞ ঁੑ உੑ ˞αϯϓϦϯάϥϯμϜͰׂ̍ఔ
·ͱΊ w ը૾ࣝผ"1*৭ʑ͋Δ w ༻్ʹ߹Θͤͯࣝผͱݕग़ͷόϥϯεͰબ w ϓϩϑը૾͚ͩͰஉঁൺͱΕͨ
͓·͚ ͜ͷൺʹຊʹͳΔͷ͔ࢼͨ͠ छྨ உੑ ঁੑ ͦͷଞ ࣗͰ͑Δ 65%(97) 35%(52) 12
Amazon Rekognition 46%(36) 54%(42) 22 Face API 51%(21) 49%(20) 121 ͳΔ΄Ͳɾɾɾ