Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow & DeepMind Lab & UNREAL
Search
Kosuke Miyoshi
April 20, 2017
Technology
1
2.6k
TensorFlow & DeepMind Lab & UNREAL
TensorFlowで実装したUNREALアルゴリズムでDeepMind Labの3D迷路を解く
Kosuke Miyoshi
April 20, 2017
Tweet
Share
More Decks by Kosuke Miyoshi
See All by Kosuke Miyoshi
Representation Learning with Contrastive Predictive Coding
miyosuda
1
190
Sutton "Reinforcement Learning" 2nd Edition Ch13: Policy Gradient Methods
miyosuda
0
200
Sutton "Reinforcement Learning" 2nd Edition Ch7: n-step Bootstrapping
miyosuda
0
82
Sutton "Reinforcement Learning" 2nd Edition Ch6: TD-learning
miyosuda
0
90
SCAN
miyosuda
0
820
Variational Auto Encoderでの Disentangled表現
miyosuda
0
620
Other Decks in Technology
See All in Technology
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
540
Why React!?? Next.jsそしてReactを改めてイチから選ぶ
ypresto
10
4.5k
バイブコーディングと継続的デプロイメント
nwiizo
2
440
20250929_QaaS_vol20
mura_shin
0
130
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
960
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
280
AIが書いたコードをAIが検証する!自律的なモバイルアプリ開発の実現
henteko
1
350
「Verify with Wallet API」を アプリに導入するために
hinakko
1
250
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
多野優介
tanoyusuke
1
460
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
400
実装で解き明かす並行処理の歴史
zozotech
PRO
1
530
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Building an army of robots
kneath
306
46k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Balancing Empowerment & Direction
lara
4
680
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Music & Morning Musume
bryan
46
6.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Code Reviewing Like a Champion
maltzj
525
40k
Being A Developer After 40
akosma
91
590k
How to train your dragon (web standard)
notwaldorf
96
6.3k
Transcript
5FOTPS'MPX %FFQNJOE-BC OBSSBUJWFOJHIUTגࣜձࣾ ࡾ߁༞ 5FOTPS'MPX6TFS(SPVQ
%FFQ.JOE-BC
6/3&"- ڧԽֶशͷ"$ΞϧΰϦζϜΛϕʔεʹ&YQFSJFODF 3FQMBZΛͬͨิॿλεΫΛΈ߹Θͤͯ%໎࿏Ͱ YഒͷֶशͷߴԽΛ࣮ݱ REINFORCEMENT LEARNING WITH UNSUPERVISED AUXILIARY TASKS
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki et. al (DeepMind, 2016)
ಈͷເ w ಈເͷதͰܦݧͨ͠ग़དྷࣄΛ࠶ݱ ϦϓϨΠ ͠ ͳ͕Βւഅ৽ൽ࣭ͷهԱͷݻఆΛߦ͍ͬͯΔ w ߠఆత൱ఆతͳใुʹؔΘΔग़དྷࣄͷເΛಘʹස ൟʹݟֶͯशΛߦ͍ͬͯΔ w
FYʮਫҿΈͰϥΠΦϯΛݟ͔͚ͯةݥͳʹ͋ͬ ͨʯ w 6/3&"-Ͱ͜ΕΛώϯτʹ͍ͯ͠Δ
ڧԽֶश ڥ ΤʔδΣϯτ "DUJPO ⬆ ➡ ⬇ ঢ়ଶ T ใु
S
6/3&"-ͷྲྀΕ %2/ "$ 6/3&"-
"$ "TZODISPOPVT"EWBODFE"DUPS$SJUJD w ෳͷڥΛඇಉظʹฒྻʹಈֶ͔ͯ͠शΛߴԽ ҆ఆԽͤͨ͞
К 1PMJDZ 7 ֤"DUJPOΛऔΔ֬ ݱࡏͷঢ়ଶՁ ⬆ ➡ ⬇ TPGUNBY MJOFBS
$POW $POW '$ -45. "$ͷωοτϫʔΫߏ
֤-PDBM/FUXPSLͰɺֶश݁Ռͷޯ EВ ͷΈΛٻΊɺ ΣΠτʹөͤͣ(MPCBMͷΣΠτ В ʹݸผʹөɻ (MPCBMͷΣΠτΛ·֤ͨ-PDBMͷΣΠτʹίϐʔɻ EВ EВ EВ
EВ В ʜ
1PMJDZ К 7ͷޯ R= = = w 73ʹ͚ۙͮΔ༷ʹߋ৽ w 37͕ਖ਼ͳΒɺऔͬͨBDUJPO͕ग़Δ֬Λ૿༷͢ʹߋ৽
37͕ෛͳΒɺऔͬͨBDUJPO͕ग़Δ֬ΛݮΒ༷͢ʹߋ৽ V network: Policy network: ˞্هͷදهͰ7(SBEJFOU%FTDFOU 1PMJDZ(SBEJFOU"TDFOUθv = θv - α * dθv, θ = θ + α * dθ 1PMJDZ 7
6/3&"- w "$ʹɺ&YQFSJFODF3FQMBZΛޮՌతʹͬͨิ ॿλεΫΛಋೖ͠ɺ͞ΒʹֶशΛߴԽͤ͞Δ w 1JYFM$POUSPM w 3FXBSE1SFEJDUJPO w 7BMVF'VODUJPO3FQMBZ
6/TVQFSWJTFE3&JOGPSDFNFOU"VYJMJBSZ-FBSOJOH
&YQFSJFODF3FQMBZ w <ঢ়ଶ "DUJPO ใु ࣍ঢ়ଶ>ͷϖΞΛେྔʹอଘ͠ ͯɺ͔ͦ͜ΒαϯϓϦϯάͯ͠ωοτϫʔΫΛֶश w %2/ɺ͜Ε͕ͳ͍ͱֶश͕҆ఆ͠ͳ͔ͬͨ w
"$Ͱ͍ͬͯͳ͍
None
1JYFM$POUSPM w ը໘ͷϐΫηϧͷมԽྔΛΑΓେ͖͘͢Δ༷ʹ͞ ͍ͤͨ w ը໘ͷϐΫηϧͷมԽΛٖࣅใुͱ͢Δิॿλε Ϋ
1JYFM$POUSPM w ը໘ΛYͷϐΫηϧάϦουʹ͚ɺάϦουຖʹ2ֶशΛߦ͏ w %VFMJOH/FUXPSLΛͬͨ2ֶश ˞1JYFM$POUSPMͰಘΒΕͨ2͕BDUJPOͷબʹΘΕΔ༁Ͱͳ͍ YͷάϦου BDUJPO ֤άϦουͷϐΫηϧมԽྔฏۉΛใुͱͨ࣌͠ͷׂҾՃࢉใु߹ܭ2
3FXBSE1SFEJDUJPO w &YQFSJFODF3FQMBZ͔Β࿈ଓͨ͠ϑϨʔϜऔΓग़ ͠ɺϑϨʔϜͷใु͕ɺਖ਼͔ෛ͔θϩ͔Λ༧ଌ ͢ΔิॿλεΫ w ༧ଌ͢Δใुɺ ʴ ʔPSͷൺ͕ʹͳΔ༷ʹαϯϓϦϯά ༗ӹͳใुΠϕϯτϨΞͰ͋ͬͯɺසൟʹαϯϓϦϯά͞ΕΔ
3FXBSE1SFEJDUJPO ࣍ͷใु͕ PSPSΛ༧ଌ
7BMVF'VODUJPO3FQMBZ w "$Ͱ͍ͬͯΔɺঢ়ଶՁ 7 ͷਪఆ "DUPS$SJUJDͷ$SJUJDଆ Λɺ&YQFSJFODF3FQMBZ͔ΒαϯϓϦϯάͨ͠ϑϨʔϜͰ࠶ ߦ͏ w 3FXBSE1SFEJDUJPOͱҧͬͯɺαϯϓϦϯάಛʹภΒͤͳ͍
ิॿλεΫɺ"DUJPOબʹӨڹ༩͑ͳ͍͕ɺϕʔ εͷ"$ͱ$POWɺ-45.ͷ8FJHIUΛڞ༗͍ͯ͠Δͷ ͰɺิॿλεΫΛೖΕΔ͜ͱʹΑΓɺͦΕΛղ͘ޮՌతͳ ಛදݱ͕ಘΒΕΔ͜ͱʹΑΓɺؒతʹ"DUJPOબʹӨ ڹΛ༩͑Δ
ଛࣦؔ #BTF"$ 7BMVF'VODUJPO 3FQMBZ 1JYFM$POUSPM YάϦου 3FXBSE 1SFEJDUJPO
None
"$ͱͷൺֱ %FFQ.JOE-BCڥʹͯฏۉͰYഒͷߴԽ
ΓΜ͝ΛऔΔͱ ϫʔϓʹ౸ୡ͢Δͱ ΛಘͯϥϯμϜͳ ॴʹϫʔϓ
࠶ݱݕূಈը IUUQTZPVUVCFY),R#F)* ˞4QFBLFS%FDLͰද͍ࣔͯ͠Δ߹ɺ63-ϦϯΫ͕ΫϦοΫͰ͖ͳ͍ͷͰɺQEGΛμϯϩʔυͯ͠ΫϦοΫ͍ͯͩ͘͠͞
1JYFM$POUSPM ֤άϦουͷલϑϨʔϜͱͷ ϐΫηϧมԽྔ ֤άϦουͷ2 औͬͨ"DUJPOʹର͢Δ2
1PMJDZ К ֤ΞΫγϣϯΛऔΔ֬ લਐ ޙୀ ࠨӈճస ࠨӈεϥΠυ ֶश͕ਐΉͱ΄΅ͷ֬Ͱ֤"DUJPOΛબͿΑ͏ʹͳͬͯ͘Δ
7BMVF'VODUJPO ݱࡏͷঢ়ଶՁ ϫʔϓ ʹۙͮ͘ʹͭΕ্͕͍ͯͬͯ͘
3FXBSE1SFEJDUJPO ϓϥεใु͕དྷΔͱ༧ଌ͍ͯ͠Δ
4PVSDF w IUUQTHJUIVCDPNNJZPTVEBVOSFBM