Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow & DeepMind Lab & UNREAL
Search
Kosuke Miyoshi
April 20, 2017
Technology
1
2.5k
TensorFlow & DeepMind Lab & UNREAL
TensorFlowで実装したUNREALアルゴリズムでDeepMind Labの3D迷路を解く
Kosuke Miyoshi
April 20, 2017
Tweet
Share
More Decks by Kosuke Miyoshi
See All by Kosuke Miyoshi
Representation Learning with Contrastive Predictive Coding
miyosuda
1
160
Sutton "Reinforcement Learning" 2nd Edition Ch13: Policy Gradient Methods
miyosuda
0
190
Sutton "Reinforcement Learning" 2nd Edition Ch7: n-step Bootstrapping
miyosuda
0
74
Sutton "Reinforcement Learning" 2nd Edition Ch6: TD-learning
miyosuda
0
89
SCAN
miyosuda
0
800
Variational Auto Encoderでの Disentangled表現
miyosuda
0
600
Other Decks in Technology
See All in Technology
テストコードにはテストの意図を込めよう(2025年版) #retechtalk / Put the intent of the test 2025
nihonbuson
PRO
9
1.7k
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
430
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
730
Tailwind CSS の小話「コンテナークエリーって便利」
yamaday
0
120
CARTA HOLDINGS エンジニア向け 採用ピッチ資料 / CARTA-GUIDE-for-Engineers
carta_engineering
0
27k
UIパフォーマンス最適化: AIを活用して100倍の速度向上を実現した事例
kinocoboy2
1
300
Simplify! 10 ways to reduce complexity in software development
ufried
2
260
SaaS公式MCPサーバーをリリースして得た学び
kawamataryo
5
1.3k
Terraform にコントリビュートしていたら Azure のコストをやらかした話 / How I Messed Up Azure Costs While Contributing to Terraform
nnstt1
1
520
Ninno LT
kawaguti
PRO
1
120
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
9
1.4k
Cursorをチョッパヤインタビューライターにチューニングする方法 / how to tuning cursor for interview write
shuzon
2
240
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Building Applications with DynamoDB
mza
94
6.4k
A designer walks into a library…
pauljervisheath
205
24k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
800
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Typedesign – Prime Four
hannesfritz
41
2.6k
The Cult of Friendly URLs
andyhume
78
6.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Code Reviewing Like a Champion
maltzj
523
40k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
120
52k
Transcript
5FOTPS'MPX %FFQNJOE-BC OBSSBUJWFOJHIUTגࣜձࣾ ࡾ߁༞ 5FOTPS'MPX6TFS(SPVQ
%FFQ.JOE-BC
6/3&"- ڧԽֶशͷ"$ΞϧΰϦζϜΛϕʔεʹ&YQFSJFODF 3FQMBZΛͬͨิॿλεΫΛΈ߹Θͤͯ%໎࿏Ͱ YഒͷֶशͷߴԽΛ࣮ݱ REINFORCEMENT LEARNING WITH UNSUPERVISED AUXILIARY TASKS
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki et. al (DeepMind, 2016)
ಈͷເ w ಈເͷதͰܦݧͨ͠ग़དྷࣄΛ࠶ݱ ϦϓϨΠ ͠ ͳ͕Βւഅ৽ൽ࣭ͷهԱͷݻఆΛߦ͍ͬͯΔ w ߠఆత൱ఆతͳใुʹؔΘΔग़དྷࣄͷເΛಘʹස ൟʹݟֶͯशΛߦ͍ͬͯΔ w
FYʮਫҿΈͰϥΠΦϯΛݟ͔͚ͯةݥͳʹ͋ͬ ͨʯ w 6/3&"-Ͱ͜ΕΛώϯτʹ͍ͯ͠Δ
ڧԽֶश ڥ ΤʔδΣϯτ "DUJPO ⬆ ➡ ⬇ ঢ়ଶ T ใु
S
6/3&"-ͷྲྀΕ %2/ "$ 6/3&"-
"$ "TZODISPOPVT"EWBODFE"DUPS$SJUJD w ෳͷڥΛඇಉظʹฒྻʹಈֶ͔ͯ͠शΛߴԽ ҆ఆԽͤͨ͞
К 1PMJDZ 7 ֤"DUJPOΛऔΔ֬ ݱࡏͷঢ়ଶՁ ⬆ ➡ ⬇ TPGUNBY MJOFBS
$POW $POW '$ -45. "$ͷωοτϫʔΫߏ
֤-PDBM/FUXPSLͰɺֶश݁Ռͷޯ EВ ͷΈΛٻΊɺ ΣΠτʹөͤͣ(MPCBMͷΣΠτ В ʹݸผʹөɻ (MPCBMͷΣΠτΛ·֤ͨ-PDBMͷΣΠτʹίϐʔɻ EВ EВ EВ
EВ В ʜ
1PMJDZ К 7ͷޯ R= = = w 73ʹ͚ۙͮΔ༷ʹߋ৽ w 37͕ਖ਼ͳΒɺऔͬͨBDUJPO͕ग़Δ֬Λ૿༷͢ʹߋ৽
37͕ෛͳΒɺऔͬͨBDUJPO͕ग़Δ֬ΛݮΒ༷͢ʹߋ৽ V network: Policy network: ˞্هͷදهͰ7(SBEJFOU%FTDFOU 1PMJDZ(SBEJFOU"TDFOUθv = θv - α * dθv, θ = θ + α * dθ 1PMJDZ 7
6/3&"- w "$ʹɺ&YQFSJFODF3FQMBZΛޮՌతʹͬͨิ ॿλεΫΛಋೖ͠ɺ͞ΒʹֶशΛߴԽͤ͞Δ w 1JYFM$POUSPM w 3FXBSE1SFEJDUJPO w 7BMVF'VODUJPO3FQMBZ
6/TVQFSWJTFE3&JOGPSDFNFOU"VYJMJBSZ-FBSOJOH
&YQFSJFODF3FQMBZ w <ঢ়ଶ "DUJPO ใु ࣍ঢ়ଶ>ͷϖΞΛେྔʹอଘ͠ ͯɺ͔ͦ͜ΒαϯϓϦϯάͯ͠ωοτϫʔΫΛֶश w %2/ɺ͜Ε͕ͳ͍ͱֶश͕҆ఆ͠ͳ͔ͬͨ w
"$Ͱ͍ͬͯͳ͍
None
1JYFM$POUSPM w ը໘ͷϐΫηϧͷมԽྔΛΑΓେ͖͘͢Δ༷ʹ͞ ͍ͤͨ w ը໘ͷϐΫηϧͷมԽΛٖࣅใुͱ͢Δิॿλε Ϋ
1JYFM$POUSPM w ը໘ΛYͷϐΫηϧάϦουʹ͚ɺάϦουຖʹ2ֶशΛߦ͏ w %VFMJOH/FUXPSLΛͬͨ2ֶश ˞1JYFM$POUSPMͰಘΒΕͨ2͕BDUJPOͷબʹΘΕΔ༁Ͱͳ͍ YͷάϦου BDUJPO ֤άϦουͷϐΫηϧมԽྔฏۉΛใुͱͨ࣌͠ͷׂҾՃࢉใु߹ܭ2
3FXBSE1SFEJDUJPO w &YQFSJFODF3FQMBZ͔Β࿈ଓͨ͠ϑϨʔϜऔΓग़ ͠ɺϑϨʔϜͷใु͕ɺਖ਼͔ෛ͔θϩ͔Λ༧ଌ ͢ΔิॿλεΫ w ༧ଌ͢Δใुɺ ʴ ʔPSͷൺ͕ʹͳΔ༷ʹαϯϓϦϯά ༗ӹͳใुΠϕϯτϨΞͰ͋ͬͯɺසൟʹαϯϓϦϯά͞ΕΔ
3FXBSE1SFEJDUJPO ࣍ͷใु͕ PSPSΛ༧ଌ
7BMVF'VODUJPO3FQMBZ w "$Ͱ͍ͬͯΔɺঢ়ଶՁ 7 ͷਪఆ "DUPS$SJUJDͷ$SJUJDଆ Λɺ&YQFSJFODF3FQMBZ͔ΒαϯϓϦϯάͨ͠ϑϨʔϜͰ࠶ ߦ͏ w 3FXBSE1SFEJDUJPOͱҧͬͯɺαϯϓϦϯάಛʹภΒͤͳ͍
ิॿλεΫɺ"DUJPOબʹӨڹ༩͑ͳ͍͕ɺϕʔ εͷ"$ͱ$POWɺ-45.ͷ8FJHIUΛڞ༗͍ͯ͠Δͷ ͰɺิॿλεΫΛೖΕΔ͜ͱʹΑΓɺͦΕΛղ͘ޮՌతͳ ಛදݱ͕ಘΒΕΔ͜ͱʹΑΓɺؒతʹ"DUJPOબʹӨ ڹΛ༩͑Δ
ଛࣦؔ #BTF"$ 7BMVF'VODUJPO 3FQMBZ 1JYFM$POUSPM YάϦου 3FXBSE 1SFEJDUJPO
None
"$ͱͷൺֱ %FFQ.JOE-BCڥʹͯฏۉͰYഒͷߴԽ
ΓΜ͝ΛऔΔͱ ϫʔϓʹ౸ୡ͢Δͱ ΛಘͯϥϯμϜͳ ॴʹϫʔϓ
࠶ݱݕূಈը IUUQTZPVUVCFY),R#F)* ˞4QFBLFS%FDLͰද͍ࣔͯ͠Δ߹ɺ63-ϦϯΫ͕ΫϦοΫͰ͖ͳ͍ͷͰɺQEGΛμϯϩʔυͯ͠ΫϦοΫ͍ͯͩ͘͠͞
1JYFM$POUSPM ֤άϦουͷલϑϨʔϜͱͷ ϐΫηϧมԽྔ ֤άϦουͷ2 औͬͨ"DUJPOʹର͢Δ2
1PMJDZ К ֤ΞΫγϣϯΛऔΔ֬ લਐ ޙୀ ࠨӈճస ࠨӈεϥΠυ ֶश͕ਐΉͱ΄΅ͷ֬Ͱ֤"DUJPOΛબͿΑ͏ʹͳͬͯ͘Δ
7BMVF'VODUJPO ݱࡏͷঢ়ଶՁ ϫʔϓ ʹۙͮ͘ʹͭΕ্͕͍ͯͬͯ͘
3FXBSE1SFEJDUJPO ϓϥεใु͕དྷΔͱ༧ଌ͍ͯ͠Δ
4PVSDF w IUUQTHJUIVCDPNNJZPTVEBVOSFBM