Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago...
Search
monochromegane
March 11, 2025
Programming
1
220
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
2025.03.11 Fukuoka.go#21
https://fukuokago.connpass.com/event/344467/
monochromegane
March 11, 2025
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
150
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
210
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
4.4k
ベクトル検索システムの気持ち
monochromegane
37
11k
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
300
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1.1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
730
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1.1k
Go言語でMac GPUプログラミング
monochromegane
2
700
Other Decks in Programming
See All in Programming
Towards Transactional Buffering of CDC Events @ Flink Forward 2025 Barcelona Spain
hpgrahsl
0
120
Module Proxyのマニアックな話 / Niche Topics in Module Proxy
kuro_kurorrr
0
1k
外接に惑わされない自システムの処理時間SLIをOpenTelemetryで実現した話
kotaro7750
0
150
SODA - FACT BOOK(JP)
sodainc
1
9.1k
O Que É e Como Funciona o PHP-FPM?
marcelgsantos
0
250
Swift Concurrency 年表クイズ
omochi
3
220
モテるデスク環境
mozumasu
3
1.4k
CSC305 Lecture 10
javiergs
PRO
0
330
20251016_Rails News ~Rails 8.1の足音を聴く~
morimorihoge
3
900
iOSでSVG画像を扱う
kishikawakatsumi
0
180
Kotlin 2.2が切り拓く: コンテキストパラメータで書く関数型DSLと新しい依存管理のかたち
knih
0
210
ALL CODE BASE ARE BELONG TO STUDY
uzulla
29
6.9k
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Raft: Consensus for Rubyists
vanstee
140
7.2k
It's Worth the Effort
3n
187
28k
Designing for Performance
lara
610
69k
Speed Design
sergeychernyshev
32
1.2k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Testing 201, or: Great Expectations
jmmastey
46
7.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Transcript
ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo, Inc. 2025.03.11 Fukuoka.go#21
GoݴޠͰͷ࣮Λ௨ֶͯ͠Ϳ ߴͳϕΫτϧݕࡧΛࢧ͑Δ ΫϥελϦϯάٕज़
1. ͡Ίʹ 2. ϕΫτϧݕࡧΤϯδϯΛࢧ͑ΔΫϥελϦϯάٕज़ 3. GoݴޠͰk-meansΛ࣮͢Δ 4. ධՁ 5. ·ͱΊ
 2 ࣍
1. ͡Ίʹ
• AIͱ֎෦ใͷՍ͚ڮͱͳΔɺRAGʢRetrieval-Augmented Generationʣʹ ද͞ΕΔΑ͏ʹɺඇߏԽσʔλΛϕΫτϧʹมͯ͠ݕࡧ͢ΔɺϕΫτϧ ݕࡧΤϯδϯͷ༗༻ੑ͕ݟ͞Ε͍ͯΔ • ૉͳϕΫτϧݕࡧΤϯδϯɺϕΫτϧू߹͔ΒΫΤϦͱͳΔϕΫτϧͷۙ ʹҐஔ͢Δ෦ू߹ΛಘΔͨΊʹɺू߹ͷશཁૉʹରͯ͠ྨࣅڑͷ ईΛܭࢉ͢Δ •
ݕࡧରͱͳΔϕΫτϧ͕ߴ࣍ݩʢ  ʣ͔ͭσʔλ͕ଟ͍ ʢ  ʣ߹ɺ૯ͨΓͰ࣮༻తͳݕࡧੑೳΛಘΒΕͳ͍ͨΊɺਫ਼ͱ ͷτϨʔυΦϑΛڐ༰ͨ͠ɺۙࣅۙ୳ࡧͷΞϓϩʔν͕࠾༻͞ΕΔ D > 103 N > 104  4 ͡Ίʹʢ1/2ʣ
• ۙࣅۙ୳ࡧΛ࣮ݱ͢ΔϕΫτϧݕࡧΤϯδϯଟ͘ఏҊ͞Ε͍ͯΔ ʢAnnoyɺFaissɺQdrantɺChromaʣ • ҰํͰɺ͜ΕΒͷΤϯδϯͷੑೳΛҾ͖ग़ͨ͢Ίʹɺۙࣅۙ୳ࡧΞϧΰϦ ζϜΛɺѻ͏σʔλͱͷੑΛؚΊͯཧղ͢Δඞཁ͕͋Δ • ͳΜ͔Α͘Θ͔ΒΜ͕IVFPQͰσϑΥϧτύϥϝʔλͰϤγ • ຊൃදͰɺ͡Ίʹදతͳۙࣅۙ୳ࡧΞϧΰϦζϜΛհ͢Δɻ
࣍ʹɺͦ͜Ͱڞ௨ͯ͠࠾༻͞ΕΔΫϥελϦϯάٕज़ʹண͠ɺGoݴޠͰͷ ࣮Λ௨ͯ͠ɺͦͷಛੑΛཧղ͢Δ  5 ͡Ίʹʢ2/2ʣ
2. ߴͳ ϕΫτϧݕࡧΤϯδϯΛࢧ͑Δ ΫϥελϦϯάٕज़
• ϕΫτϧෳͷ͔ΒͳΔҰͭͷʮྔʯ • ͭ·ΓɺൺΔͨΊͷදݱܗࣜͷҰछ • ϕΫτϧಉ࢜ͷൺֱͷई • ϢʔΫϦουڑ:  •
ίαΠϯྨࣅ:  d(xi , xj ) = ∥xi − xj ∥2 = D ∑ d=1 (xi,d − xj,d )2 cos(θ) = xi ⋅ xj ∥xi ∥∥xj ∥ = ∑D d=1 xi,d xj,d ∑D d=1 x2 i,d ⋅ ∑D d=1 x2 j,d  7 ϕΫτϧݕࡧ
• ϕΫτϧू߹  ʹରͯ͠ΫΤϦϕΫτϧ  ͷۙ  ϕΫτϧΛಘ͍ͨ • 
• ૯ͨΓʢBrute forceʣͰɺσʔλ  ͱ࣍ݩ  ʹԠͯ͡ܭࢉྔ͕૿Ճ • ಉ༷ʹɺσʔλαΠζ͕૿Ճ͠ɺϝϞϦ্ͷల։͕ࠔʹͳΔ • ਫ਼ͱͷτϨʔυΦϑΛڐ༰ͯ͠ɺݕࡧͷ্ͱσʔλαΠζͷݮΛਤ Δۙࣅۙ୳ࡧΞϧΰϦζϜ͕ଟ͘ఏҊ͞Ε͍ͯΔ X q k 𝒩 k (q, X) = argminS⊂X,|S|=k ∑ x∈S d(q, x) N D  8 ۙ୳ࡧ
• ϕΫτϧू߹Λ  ݸͷදϕΫτϧ  Ͱදݱ͢Δ • ͜͜ͰͷྔࢠԽɺࢄԽʢάϧʔϐϯάʣͱଊ͑ͯΑ͍ • ϕΫτϧू߹
 ɺදϕΫτϧͷΠϯσοΫεͷू߹ͱͳΓɺ 256ύλʔϯͰ͋ΕϕΫτϧ͋ͨΓ8bitsͰදݱͰ͖Δ • ݕࡧ࣌ʹɺΫΤϦϕΫτϧͷ࠷͍ۙදϕΫτϧΛ୳ͨ͢Ίɺ୳ࡧେ ෯ʹݮͰ͖Δ • ҰํͰྔࢠԽޡࠩʢΫϥελͰͷࠩҟ͕ͳ͍ɺΫϥελॴଐޡΓʣ͕ൃੜ ͠ɺߴ࣍ݩʹͳΔ΄Ͳɺ͜ΕΛ͑ΔͨΊʹඞཁͳදϕΫτϧ͕૿Ճ͢Δ K C = {c1 , …cK } X  9 ϕΫτϧྔࢠԽʢVector Quantization: VQʣ
• ߴ࣍ݩϕΫτϧΛ  ݸͷ࣍ݩαϒϕΫτϧʹׂ͠ɺಠཱͯ͠VQ͢Δ • ͜͜Ͱੵͱɺू߹ಉ࢜ͷΈ߹ΘͤͰ৽͍͠ू߹ΛಘΔ͜ͱ •  ࣍ݩϕΫτϧΛ 
ຊͷ  ࣍ݩαϒϕΫτϧʹׂ͠ɺͦΕͧΕͷ VQͰ  ύλʔϯʹྔࢠԽͨ͠ͳΒɺ  ύλʔϯΛදݱͰ͖Δ M D M = 4 D/M 28 (28)4 = 232  10 ੵྔࢠԽʢProduct Quantization: PQʣʢ1/2ʣ  X ∈ RN×D  X1 ∈ RN×D/M  X2 ∈ RN×D/M  XM ∈ RN×D/M  …  ×  2K/M  2K/M  2K/M  2K  ≃
• PQʹ͓͚ΔݕࡧɺΫΤϦϕΫτϧΛ  αϒϕΫτϧʹׂ͠ɺରԠ͢Δα ϒϕΫτϧू߹ʹ͓͚Δ࠷͍ۙදϕΫτϧͱͷڑΛՃࢉ͢Δ •  • ΫΤϦαϒϕΫτϧͱදαϒϕΫτϧಉ࢜ͷΈ߹ΘͤࣄલʹϧοΫΞο ϓςʔϒϧͱͯ͠ܭࢉՄೳͰ͋ΓɺશϕΫτϧू߹ʹର͢ΔڑܭࢉͷޮԽ
Խ͕ՄೳʢͪΖΜϕΫτϧׂʹΑΔޡࠩ͋Δʣ • ҰํͰɺڑܭࢉશϕΫτϧू߹ͷσʔλ  ճൃੜ͢Δ M d(q, x) = M ∑ m=1 d(q(m), C(m)) N  11 ੵྔࢠԽʢProduct Quantization: PQʣʢ2/2ʣ
• ϕΫτϧू߹Λߥ͘ྨ͠ɺΫϥελ͝ͱʹΠϯσοΫεΛ࡞ • ΫΤϦ࣌ʹɺݕࡧରΛߜΓࠐΜͰݕࡧͰ͖ΔͨΊܭࢉྔͷݮ͕Մೳ • PQͱΈ߹ΘͤΔ͜ͱͰɺPQͷશ݅ݕࡧͷ՝Λ؇͢Δ  12 సஔΠϯσοΫεʢInVerted File:
IVFʣ  X ∈ RN′  ×D  X1 ∈ RN′  ×D/M  X2 ∈ RN′  ×D/M  XM ∈ RN′  ×D/M  …  ×  ≃  X ∈ RN′  ×D  X1 ∈ RN′  ×D/M  X2 ∈ RN′  ×D/M  XM ∈ RN′  ×D/M  …  ×  ≃  X ∈ RN′  ×D  X1 ∈ RN′  ×D/M  X2 ∈ RN′  ×D/M  XM ∈ RN′  ×D/M  …  ×  ≃ ⋮  X ∈ RN×D
• VQɺPQɺIVFΛ௨ͯ͠ɺσʔλྔͷݮͱݕࡧͷߴԽΛਤΔͨΊͷ४උͱ ͯ͠ɺΫϥελϦϯά͕ߦΘΕ͍ͯΔ͜ͱ͕͔Δ • FaissͰΫϥελϦϯάͱͯ͠k-meansΞϧΰϦζϜ͕ΘΕ͓ͯΓɺߴͳ ࣮ͱͳ͍ͬͯΔͱͷ͜ͱ • GoݴޠͰk-meansͷ࣮ͷߴԽΛ௨ͯ͠ɺͦͷಛੑΛཧղ͢Δ  13
ۙࣅۙ୳ࡧͱΫϥελϦϯάٕज़
3. GoݴޠͰk-meansΛ࣮͢Δ
• k-means ɺڭࢣͳֶ͠शͷҰछͰ͋ΓɺσʔλΛ  ݸͷΫϥελʹׂ͢Δ ΫϥελϦϯάख๏ • ֤Ϋϥελɺͦͷத৺ʢηϯτϩΠυʣΛ࣋ͪɺσʔλ࠷͍ۙηϯτ ϩΠυʹׂΓͯΒΕΔɻ •
ΞϧΰϦζϜɺσʔλͷׂΓͯͱηϯτϩΠυͷߋ৽Λ܁Γฦ͠ɺऩଋ ͢Δ·Ͱ࣮ߦ͞ΕΔɻ K  15 k-means → → ⋯
• ηϯτϩΠυͷσʔλͷׂΓͯͱηϯτϩΠυͷߋ৽ • શσʔλʹରͯ͠ݱࡏͷ֤ηϯτϩΠυͱͷڑΛܭࢉ •  • ࠷͍ۙηϯτϩΠυͷΫϥελ͕͔ΔͷͰɺΫϥελ͝ͱʹσʔλΛ ͠ࠐΉ •
શσʔλͷܭࢉޙʹΫϥελ͝ͱͷσʔλͰ͠ࠐΜͩσʔλΛׂΔ͜ͱ Ͱ৽͍͠ηϯτϩΠυΛಘΔ N × K × D  16 ૉͳ࣮
• ηϯτϩΠυͷσʔλͷׂΓͯͱηϯτϩΠυͷߋ৽  17 ૉͳ࣮
• ઢܗϥΠϒϥϦBLASʢBasic Linear Algebra SubprogramsʣΛར༻͢Δ GonumΛ͏͜ͱͰޮతͳܭࢉ • ϚϧνεϨουSIMDΛۦͯ͠ߦྻܭࢉΛߴԽͯ͘͠ΕΔ • ͨͩ͠ߦྻܗࣜͰҰׅͰॲཧ
͢ΔͨΊϝϞϦͷ༻ྔ େ͖͍ɻ ·ͨΦʔόʔϔουଘࡏ ͢Δʢͣʣ  18 ߴͳ࣮ 9 ⽷⽹ ⎢ ⎥ ⎢ ⎥ ⽸⽺ $ ⽷⽹ ⽸⽺ 9$5 ⽷⽹ ⎢ ⎥ ⎢ ⎥ ⽸⽺
• શσʔλʹରͯ͠ݱࡏͷ֤ηϯτϩΠυͱͷڑΛܭࢉΛҰׅͰΔ •  • ͨͩ͠ɺ  Ͱɺ֤ߦͷฏํϢʔΫϦουڑʢXCͷ Ճࢉ֤ྻɾ֤ߦͷ܁Γฦ͠ͱͯ͠ߟ͑Δʣ •
 Λ࠶ར༻Ͱ͖Δͷ͕خ͍͠ • ηϯτϩΠυͷߋ৽ •  ɻͨͩ͠  ֤σʔλ͕ͲͷΫϥελʹ ଐ͢Δ͔Λදݱ͢Δߦྻ ∥X − C∥2 2 = ∥X∥2 2 − 2XC⊤ + ∥C∥2 2 ∥X∥2 2 ∈ RN,∥C∥2 2 ∈ RK ∥X∥2 2 C = (diag(E⊤E))−1E⊤X E ∈ RN×K  19 ߴͳ࣮
• Ͱ͖Δ͚ͩGonumΛͬͯߦྻϕΫτϧ୯ҐͰॲཧ • গͳ͘ͱίʔυ্  ʹରԠ͢Δ܁Γฦ͠ফ͑ͨ D  20 ߴͳ࣮
͜ͷลҰׅͰ͏ ·͘Γ͔ͨͬͨ
4. ධՁ
• Gonum࣮ͷk-meansΛ࣮ߦͯ͠୯ ७ͳΫϥελϦϯά͕͏·͍͘͘͜ͱ Λ֬ೝ • x͕ηϯτϩΠυ • ఆ͢ΔΫϥελͷσʔλΛ༧ଌ  22
ՄࢹԽ
• 10,000ݸͷσʔλϙΠϯτʹ͍ͭͯɺ2࣍ݩͱ1024࣍ݩͷσʔλΛ4Ϋϥελ ʹྨ͢ΔࡍͷɺॳظԽʢk-means++ʣɾҰճ͋ͨΓͷߋ৽ɾॳظԽΛؚΊ ͨऩଋ·Ͱͷֶशʹ͍ͭͯ؆қͳൺֱΛ࣮ࢪͨ͠  23 ϕϯνϚʔΫʢ1/2ʣ # 2࣍ݩʢ֤ΧςΰϦʹ্͓͍ͯஈ͕φΠʔϒ࣮ɺԼஈ͕Gonum࣮ʣ ##
ॳظԽ BenchmarkNaiveKMeansClusters4Datapoints10000Features2InitKMeansPlusPlus-11 10000 1157458 ns/op 409769 B/op 8 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features2InitKMeansPlusPlus-11 8242 1535928 ns/op 2748619 B/op 11009 allocs/op ## Ұճ͋ͨΓͷߋ৽ BenchmarkNaiveKMeansClusters4Datapoints10000Features2Iter1-11 9415 1285607 ns/op 192 B/op 6 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features2Iter1-11 10000 1157688 ns/op 2364080 B/op 10357 allocs/op ## ऩଋ·Ͱͷֶश BenchmarkNaiveKMeansClusters4Datapoints10000Features2InitKMeansPlusPlusTol1e6-11 1606 6893775 ns/op 410593 B/op 33 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features2InitKMeansPlusPlusTol1e6-11 1900 6157529 ns/op 7579239 B/op 13279 allocs/op • ࣍ݩͷΫϥελϦϯάͰɺ͍ͣΕGonumΛར༻͢Δ͜ͱͰͷมԽݟ ΒΕͳ͍ɻҰํͰϝϞϦ༻ྔ૿Ճ͢Δ
• 10,000ݸͷσʔλϙΠϯτʹ͍ͭͯɺ2࣍ݩͱ1024࣍ݩͷσʔλΛ4Ϋϥελ ʹྨ͢ΔࡍͷɺॳظԽʢk-means++ʣɾҰճ͋ͨΓͷߋ৽ɾॳظԽΛؚΊ ͨऩଋ·Ͱͷֶशʹ͍ͭͯ؆қͳൺֱΛ࣮ࢪͨ͠  24 ϕϯνϚʔΫʢ2/2ʣ # 1024࣍ݩʢ֤ΧςΰϦʹ্͓͍ͯஈ͕φΠʔϒ࣮ɺԼஈ͕Gonum࣮ʣ ##
ॳظԽ BenchmarkNaiveKMeansClusters4Datapoints10000Features1024InitKMeansPlusPlus-11 22 502432970 ns/op 409768 B/op 8 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features1024InitKMeansPlusPlus-11 720 16233131 ns/op 2499008 B/op 11002 allocs/op ## Ұճ͋ͨΓͷߋ৽ BenchmarkNaiveKMeansClusters4Datapoints10000Features1024Iter1-11 16 639431708 ns/op 32896 B/op 6 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features1024Iter1-11 639 18590832 ns/op 1932983 B/op 10380 allocs/op ## ऩଋ·Ͱͷֶश BenchmarkNaiveKMeansClusters4Datapoints10000Features1024InitKMeansPlusPlusTol1e6-11 5 2858952383 ns/op 528193 B/op 29 allocs/op BenchmarkLinearAlgebraKMeansClusters4Datapoints10000Features1024InitKMeansPlusPlusTol1e6-11 249 48778582 ns/op 4435664 B/op 12892 allocs/op • ߴ࣍ݩͷΫϥελϦϯάͰɺ࣍ݩʹൺͯφΠʔϒͳ࣮100ഒɺ GonumͰ10ഒఔͷมԽͰ͋ΓɺGonum࣮ͷ༏Ґੑ͕ग़ͨɻ
5. ·ͱΊ
• ࣮༻తͳϕΫτϧݕࡧΤϯδϯΛࢧ͑ΔΫϥελϦϯάٕज़ʹண͠ɺGoݴ ޠͰͷ࣮Λ௨ͯ͠ɺͦͷಛੑΛཧղͨ͠ • ߴԽσʔλαΠζͷݮͷͨΊͷΞϧΰϦζϜΛલఏͱͯ͠ɺ࣮ʹΑͬ ͯɺʹ͕ࠩग़Δ͜ͱ͕Θ͔ͬͨ • ࣍ݩͰߴԽ࣮ͷΦʔόʔϔου͕ߴԽΛଧͪফ͢Մೳੑ͕͋Γɺ ϝϞϦ༻ྔͳͲͷ؍͔Βɺಛʹ࣍ݩద༻͕ՄೳͳPQͳͲͰφΠʔϒ ͳ࣮ͱͷ͍͚༗༻͔͠Εͳ͍͜ͱࣔࠦ͞Εͨ
• ࠓޙPQ͔ΒϕΫτϧݕࡧΤϯδϯͷ։ൃਐΊ͍ͯ͘ • Go ࡾ  26 ·ͱΊ
None