Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
城ヶ崎美嘉で学ぶRNNLM
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Kento Nozawa
June 05, 2016
Programming
2
3k
城ヶ崎美嘉で学ぶRNNLM
オタク機械学習勉強会#0 のLT
Kento Nozawa
June 05, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
180
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
650
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
230
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
210
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
520
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
850
NLP Tutorial; word representation learning
nzw0301
0
230
Analyzing Centralities of Embedded Nodes
nzw0301
0
200
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Programming
See All in Programming
Rails Girls Tokyo 18th GMO Pepabo Sponsor Talk
yutokyokutyo
0
130
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
120
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
1k
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1.1k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
160
AI巻き込み型コードレビューのススメ
nealle
2
2k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
150
Oxlintはいいぞ
yug1224
5
1.4k
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
22
7.7k
Apache Iceberg V3 and migration to V3
tomtanaka
0
200
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
220
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
780
Featured
See All Featured
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
65
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.4k
A Soul's Torment
seathinner
5
2.3k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
[SF Ruby Conf 2025] Rails X
palkan
1
780
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
290
Transcript
ϲ࡚ඒՅ Λը૾ݕࡧ͓ͯͪ͠Լ͍͞
ϲ࡚ඒՅͰֶͿ RNNLM 2016/6/5 ΦλΫػցֶशษڧձ #0 @nzw0301
Ϟνϕʔγϣϯ ϲ࡚ඒՅͷηϦϑੜ
Recurrent Neural Network Language Model • ηϦϑੜ: લ·Ͱͷ୯ޠ͔Β࣍ͷ1୯ޠΛ༧ଌ͠ଓ͚Δ • ྫɿΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒
• ୯ޠׂ: <BOS> ΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒&04 • ֶश: Q ΊΔΊΔc#04 ͱ͔ Q ᣦՅc<BOS>, ΊΔΊΔ ʜ
RNNLMͷߏ ޠኮV࣍ݩͷϕΫτϧ softmax ؔ 1ͭલͷதؒͷϕΫτϧ RNNͷ༝ԑ h࣍ݩͷதؒ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿೖྗ w #04ͷPOFPG,දݱΛೖྗ w ࣍ݩͰີͳϕΫτϧʹม <BOS> ΊΔΊΔ 0 B
B B B B @ 0 1 0 . . . 0 1 C C C C C A
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿதؒ • ີͳϕΫτϧΛதؒʹ͢ • ଟύʔηϓτϩϯͱಉ͡ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛ͢ • ݱࡏͷதؒͷΛอ࣋ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ΊΔΊΔ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽ <BOS>
ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿೖྗ ૄΊΔΊΔϕΫτϧΛೖྗ͠ɼີͳΊΔΊΔϕΫτϧʹม p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ 0 B B
B B B B B B B B @ 0 . . . 0 1 0 . . . 0 1 C C C C C C C C C C A
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿதؒ ີͳΊΔΊΔϕΫτϧͱલʹܭࢉͨ͠தؒͷϕΫτϧΛதؒ p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛͯ͠ɼݱࡏͷதؒͷϕΫτϧΛอ࣋ p(ʜ|<BOS>, ΊΔΊΔ)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ʜ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽
ʜ ΊΔΊΔ
࣮ݧ
࣮ݧ֓ཁ • SCRNΛ༻ • LSTM GRU ΛΘͳ͍ • Keras
Ͱ࣮ • લॲཧ • ܗଶૉղੳͤͣʹจࣈ୯ҐͰֶश • /。|★|?|!|♪/ ͰηϦϑΛׂ • 900ηϦϑ (Վࢺ) Λ༻ • ϞόϚε • σϨες • TOKIMEKIΤεΧϨʔτ
݁Ռ
10epochޙɿϓϩσϡʔαʔͷҰ෦͕ͱΕͯΔ ϓϩσϩσϡʔͯͳͪʙʹෲΞλ γ΄ϡʔαʔΒతͳʔɺͨ͜ͳ
40epochޙɿΪϟϧޠʁ ϓϩσϡʔαʔʹ͍ͪΌΜɺ ݟ͘ͳ͍ʔ͘ͱԿߴͩ͠ʔͬ̇
80epochޙɿݺΕͨؾ͕ͨ͠ ϓϩσϡʔαʔ!
“<BOS> ϓ” ͔Β࠷ਪఆɿϧʔϓ ϓϩσϡʔαʔɺΞλγͷ͜ͱ͔Βɺ ϓϩσϡʔαʔɺΞλγͷ͜ͱ
ϥϯμϜʹηϦϑੜ
ॴײ • ηϦϑΛͲ͜ͰΔ͖͔ • ྫɿ͝Μʹ͢Δ?͓෩࿊ʹ͢Δ?…͜ΕͪΐͬͱϕλͬΆ͍ͳ͊ • ? Ͱ۠Δ͖͔൱͔ • …લޙͲͬͪͰ۠Δ͔൱͔ʁͦΕͱͳ͘͢ʁ
• ήʔϜը໘ͷͨΊ͔1ηϦϑܥྻ͕΄΅Ұఆʢֶͼʣ
ࢀߟจݙͳͲ • http://keras.io/ • DLͷϥΠϒϥϦ • ָ͍͢͝ʹॻ͚Δ • Mikolov at.el.
Recurrent neural network based language model. 2010. • RNNͷը૾͜ͷจͷͷΛ༻ • Mikolov at.el Learning Longer Memory in Recurrent Neural Networks. 2014. • ࠓճ༻ͨ͠Ϟσϧ