Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
城ヶ崎美嘉で学ぶRNNLM
Search
Kento Nozawa
June 05, 2016
Programming
2
2.9k
城ヶ崎美嘉で学ぶRNNLM
オタク機械学習勉強会#0 のLT
Kento Nozawa
June 05, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
120
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
570
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
160
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
150
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
450
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
760
NLP Tutorial; word representation learning
nzw0301
0
180
Analyzing Centralities of Embedded Nodes
nzw0301
0
140
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.1k
Other Decks in Programming
See All in Programming
iOS開発におけるCopilot For XcodeとCode Completion / copilot for xcode
fuyan777
1
1.4k
HTML/CSS超絶浅い説明
yuki0329
0
190
shadcn/uiを使ってReactでの開発を加速させよう!
lef237
0
280
rails newと同時に型を書く
aki19035vc
5
690
Оптимизируем производительность блока Казначейство
lamodatech
0
930
AWSのLambdaで PHPを動かす選択肢
rinchoku
2
380
ecspresso, ecschedule, lambroll を PipeCDプラグインとして動かしてみた (プロトタイプ) / Running ecspresso, ecschedule, and lambroll as PipeCD Plugins (prototype)
tkikuc
2
230
ある日突然あなたが管理しているサーバーにDDoSが来たらどうなるでしょう?知ってるようで何も知らなかったDDoS攻撃と対策 #phpcon.2024
akase244
2
7.7k
functionalなアプローチで動的要素を排除する
ryopeko
0
150
ErdMap: Thinking about a map for Rails applications
makicamel
1
220
Package Traits
ikesyo
1
190
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
280
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Designing for humans not robots
tammielis
250
25k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Speed Design
sergeychernyshev
25
730
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Transcript
ϲ࡚ඒՅ Λը૾ݕࡧ͓ͯͪ͠Լ͍͞
ϲ࡚ඒՅͰֶͿ RNNLM 2016/6/5 ΦλΫػցֶशษڧձ #0 @nzw0301
Ϟνϕʔγϣϯ ϲ࡚ඒՅͷηϦϑੜ
Recurrent Neural Network Language Model • ηϦϑੜ: લ·Ͱͷ୯ޠ͔Β࣍ͷ1୯ޠΛ༧ଌ͠ଓ͚Δ • ྫɿΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒
• ୯ޠׂ: <BOS> ΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒&04 • ֶश: Q ΊΔΊΔc#04 ͱ͔ Q ᣦՅc<BOS>, ΊΔΊΔ ʜ
RNNLMͷߏ ޠኮV࣍ݩͷϕΫτϧ softmax ؔ 1ͭલͷதؒͷϕΫτϧ RNNͷ༝ԑ h࣍ݩͷதؒ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿೖྗ w #04ͷPOFPG,දݱΛೖྗ w ࣍ݩͰີͳϕΫτϧʹม <BOS> ΊΔΊΔ 0 B
B B B B @ 0 1 0 . . . 0 1 C C C C C A
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿதؒ • ີͳϕΫτϧΛதؒʹ͢ • ଟύʔηϓτϩϯͱಉ͡ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛ͢ • ݱࡏͷதؒͷΛอ࣋ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ΊΔΊΔ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽ <BOS>
ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿೖྗ ૄΊΔΊΔϕΫτϧΛೖྗ͠ɼີͳΊΔΊΔϕΫτϧʹม p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ 0 B B
B B B B B B B B @ 0 . . . 0 1 0 . . . 0 1 C C C C C C C C C C A
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿதؒ ີͳΊΔΊΔϕΫτϧͱલʹܭࢉͨ͠தؒͷϕΫτϧΛதؒ p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛͯ͠ɼݱࡏͷதؒͷϕΫτϧΛอ࣋ p(ʜ|<BOS>, ΊΔΊΔ)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ʜ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽
ʜ ΊΔΊΔ
࣮ݧ
࣮ݧ֓ཁ • SCRNΛ༻ • LSTM GRU ΛΘͳ͍ • Keras
Ͱ࣮ • લॲཧ • ܗଶૉղੳͤͣʹจࣈ୯ҐͰֶश • /。|★|?|!|♪/ ͰηϦϑΛׂ • 900ηϦϑ (Վࢺ) Λ༻ • ϞόϚε • σϨες • TOKIMEKIΤεΧϨʔτ
݁Ռ
10epochޙɿϓϩσϡʔαʔͷҰ෦͕ͱΕͯΔ ϓϩσϩσϡʔͯͳͪʙʹෲΞλ γ΄ϡʔαʔΒతͳʔɺͨ͜ͳ
40epochޙɿΪϟϧޠʁ ϓϩσϡʔαʔʹ͍ͪΌΜɺ ݟ͘ͳ͍ʔ͘ͱԿߴͩ͠ʔͬ̇
80epochޙɿݺΕͨؾ͕ͨ͠ ϓϩσϡʔαʔ!
“<BOS> ϓ” ͔Β࠷ਪఆɿϧʔϓ ϓϩσϡʔαʔɺΞλγͷ͜ͱ͔Βɺ ϓϩσϡʔαʔɺΞλγͷ͜ͱ
ϥϯμϜʹηϦϑੜ
ॴײ • ηϦϑΛͲ͜ͰΔ͖͔ • ྫɿ͝Μʹ͢Δ?͓෩࿊ʹ͢Δ?…͜ΕͪΐͬͱϕλͬΆ͍ͳ͊ • ? Ͱ۠Δ͖͔൱͔ • …લޙͲͬͪͰ۠Δ͔൱͔ʁͦΕͱͳ͘͢ʁ
• ήʔϜը໘ͷͨΊ͔1ηϦϑܥྻ͕΄΅Ұఆʢֶͼʣ
ࢀߟจݙͳͲ • http://keras.io/ • DLͷϥΠϒϥϦ • ָ͍͢͝ʹॻ͚Δ • Mikolov at.el.
Recurrent neural network based language model. 2010. • RNNͷը૾͜ͷจͷͷΛ༻ • Mikolov at.el Learning Longer Memory in Recurrent Neural Networks. 2014. • ࠓճ༻ͨ͠Ϟσϧ