Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
城ヶ崎美嘉で学ぶRNNLM
Search
Kento Nozawa
June 05, 2016
Programming
2
3k
城ヶ崎美嘉で学ぶRNNLM
オタク機械学習勉強会#0 のLT
Kento Nozawa
June 05, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
170
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
620
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
210
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
200
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
510
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
830
NLP Tutorial; word representation learning
nzw0301
0
220
Analyzing Centralities of Embedded Nodes
nzw0301
0
180
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Programming
See All in Programming
スタートアップを支える技術戦略と組織づくり
pospome
7
7.6k
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
4
730
『実践MLOps』から学ぶ DevOps for ML
nsakki55
2
450
問題の見方を変える「システム思考」超入門
panda_program
0
300
Bakuraku E2E Scenario Test System Architecture #bakuraku_qa_study
teyamagu
PRO
0
780
Promise.tryで実現する新しいエラーハンドリング New error handling with Promise try
bicstone
3
520
DartASTとその活用
sotaatos
2
140
Nitro v3
kazupon
2
320
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
320
Herb to ReActionView: A New Foundation for the View Layer @ San Francisco Ruby Conference 2025
marcoroth
0
140
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
460
GraalVM Native Image トラブルシューティング機能の最新状況(2025年版)
ntt_dsol_java
0
160
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Speed Design
sergeychernyshev
32
1.2k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
A designer walks into a library…
pauljervisheath
210
24k
For a Future-Friendly Web
brad_frost
180
10k
Why Our Code Smells
bkeepers
PRO
340
57k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Transcript
ϲ࡚ඒՅ Λը૾ݕࡧ͓ͯͪ͠Լ͍͞
ϲ࡚ඒՅͰֶͿ RNNLM 2016/6/5 ΦλΫػցֶशษڧձ #0 @nzw0301
Ϟνϕʔγϣϯ ϲ࡚ඒՅͷηϦϑੜ
Recurrent Neural Network Language Model • ηϦϑੜ: લ·Ͱͷ୯ޠ͔Β࣍ͷ1୯ޠΛ༧ଌ͠ଓ͚Δ • ྫɿΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒
• ୯ޠׂ: <BOS> ΊΔΊΔʜᣦՅʹϝʔϧૹ৴ͬ˒&04 • ֶश: Q ΊΔΊΔc#04 ͱ͔ Q ᣦՅc<BOS>, ΊΔΊΔ ʜ
RNNLMͷߏ ޠኮV࣍ݩͷϕΫτϧ softmax ؔ 1ͭલͷதؒͷϕΫτϧ RNNͷ༝ԑ h࣍ݩͷதؒ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿೖྗ w #04ͷPOFPG,දݱΛೖྗ w ࣍ݩͰີͳϕΫτϧʹม <BOS> ΊΔΊΔ 0 B
B B B B @ 0 1 0 . . . 0 1 C C C C C A
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿதؒ • ີͳϕΫτϧΛதؒʹ͢ • ଟύʔηϓτϩϯͱಉ͡ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛ͢ • ݱࡏͷதؒͷΛอ࣋ <BOS> ΊΔΊΔ
p(ΊΔΊΔ|<BOS>) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ΊΔΊΔ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽ <BOS>
ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿೖྗ ૄΊΔΊΔϕΫτϧΛೖྗ͠ɼີͳΊΔΊΔϕΫτϧʹม p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ 0 B B
B B B B B B B B @ 0 . . . 0 1 0 . . . 0 1 C C C C C C C C C C A
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿதؒ ີͳΊΔΊΔϕΫτϧͱલʹܭࢉͨ͠தؒͷϕΫτϧΛதؒ p(ΊΔΊΔ|<BOS>)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿग़ྗ • ग़ྗʹதؒͷϕΫτϧΛͯ͠ɼݱࡏͷதؒͷϕΫτϧΛอ࣋ p(ʜ|<BOS>, ΊΔΊΔ)Ͱܭࢉͨ͠தؒͷϕΫτϧ ʜ ΊΔΊΔ
p(ʜc#04 ΊΔΊΔ) ͷܭࢉྫɿॏΈߋ৽ • SoftmaxؔͰ֬Λܭࢉ • Backpropagation Ͱ ʜ ͷ͕֬େ͖͘ͳΔΑ͏ʹߋ৽
ʜ ΊΔΊΔ
࣮ݧ
࣮ݧ֓ཁ • SCRNΛ༻ • LSTM GRU ΛΘͳ͍ • Keras
Ͱ࣮ • લॲཧ • ܗଶૉղੳͤͣʹจࣈ୯ҐͰֶश • /。|★|?|!|♪/ ͰηϦϑΛׂ • 900ηϦϑ (Վࢺ) Λ༻ • ϞόϚε • σϨες • TOKIMEKIΤεΧϨʔτ
݁Ռ
10epochޙɿϓϩσϡʔαʔͷҰ෦͕ͱΕͯΔ ϓϩσϩσϡʔͯͳͪʙʹෲΞλ γ΄ϡʔαʔΒతͳʔɺͨ͜ͳ
40epochޙɿΪϟϧޠʁ ϓϩσϡʔαʔʹ͍ͪΌΜɺ ݟ͘ͳ͍ʔ͘ͱԿߴͩ͠ʔͬ̇
80epochޙɿݺΕͨؾ͕ͨ͠ ϓϩσϡʔαʔ!
“<BOS> ϓ” ͔Β࠷ਪఆɿϧʔϓ ϓϩσϡʔαʔɺΞλγͷ͜ͱ͔Βɺ ϓϩσϡʔαʔɺΞλγͷ͜ͱ
ϥϯμϜʹηϦϑੜ
ॴײ • ηϦϑΛͲ͜ͰΔ͖͔ • ྫɿ͝Μʹ͢Δ?͓෩࿊ʹ͢Δ?…͜ΕͪΐͬͱϕλͬΆ͍ͳ͊ • ? Ͱ۠Δ͖͔൱͔ • …લޙͲͬͪͰ۠Δ͔൱͔ʁͦΕͱͳ͘͢ʁ
• ήʔϜը໘ͷͨΊ͔1ηϦϑܥྻ͕΄΅Ұఆʢֶͼʣ
ࢀߟจݙͳͲ • http://keras.io/ • DLͷϥΠϒϥϦ • ָ͍͢͝ʹॻ͚Δ • Mikolov at.el.
Recurrent neural network based language model. 2010. • RNNͷը૾͜ͷจͷͷΛ༻ • Mikolov at.el Learning Longer Memory in Recurrent Neural Networks. 2014. • ࠓճ༻ͨ͠Ϟσϧ