Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第1回 推薦システムとは
Search
okukenta
PRO
August 06, 2022
Technology
0
460
高校講座 | 第1回 推薦システムとは
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
okukenta
PRO
August 06, 2022
Tweet
Share
More Decks by okukenta
See All by okukenta
データベース|SQL
okukenta
PRO
0
70
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
okukenta
PRO
0
120
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
okukenta
PRO
0
130
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
okukenta
PRO
0
390
高校講座 | 第2回 内容ベース推薦システム
okukenta
PRO
0
410
高校講座 | 第3回 協調ベース推薦システム
okukenta
PRO
0
390
内容ベース推薦システム | 第2回 推薦システム概論
okukenta
PRO
0
580
協調ベース推薦システム | 第3回 推薦システム概論
okukenta
PRO
0
590
知識ベース推薦システム | 第4回 推薦システム概論
okukenta
PRO
0
550
Other Decks in Technology
See All in Technology
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
230
怖くない!ゼロから始めるPHPソースコードコンパイル入門
colopl
0
120
UI State設計とテスト方針
rmakiyama
2
690
Oracle Cloud Infrastructure:2024年12月度サービス・アップデート
oracle4engineer
PRO
1
230
How to be an AWS Community Builder | 君もAWS Community Builderになろう!〜2024 冬 CB募集直前対策編?!〜
coosuke
PRO
2
2.8k
Oracle Cloudの生成AIサービスって実際どこまで使えるの? エンジニア目線で試してみた
minorun365
PRO
4
300
PHP ユーザのための OpenTelemetry 入門 / phpcon2024-opentelemetry
shin1x1
3
1.3k
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
2
200
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
170
Google Cloud で始める Cloud Run 〜AWSとの比較と実例デモで解説〜
risatube
PRO
0
110
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
44
13k
GitHub's CSS Performance
jonrohan
1031
460k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Why Our Code Smells
bkeepers
PRO
335
57k
Side Projects
sachag
452
42k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Embracing the Ebb and Flow
colly
84
4.5k
A Tale of Four Properties
chriscoyier
157
23k
Thoughts on Productivity
jonyablonski
68
4.4k
Producing Creativity
orderedlist
PRO
342
39k
Rails Girls Zürich Keynote
gr2m
94
13k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第1回 推薦システムとは 奥 健太
推薦システムとは 2
推薦システムとは Amazon [1] • 「この商品を買った人はこんな商品も買っています」 • 購入履歴や閲覧履歴に基づく「おすすめ商品」 Netflix [2] •
ジャンル別の人気動画やトピックごとのおすすめ動画 • 詳細ページに表示される「こちらもオススメ」 YouTube [3] • 再生履歴や検索履歴に基づくおすすめ動画 • 再生中の動画の横に表示される関連動画 [1] https://www.amazon.co.jp/ [2] https://www.netflix.com/ [3] https://support.google.com/youtube/answer/6342839?hl=ja 3
推薦システムとは 推薦システム(recommender system) ユーザの嗜好に合ったアイテム(商品や映画、音楽、本、動画、画像、ニュース 記事など)を提示するシステム 「特定のユーザに最も興味をもたれそうなアイテムを提案するソフトウェ アツールおよび技術」[Ricci+2015] “Recommender Systems (RSs)
are software tools and techniques that provide suggestions for items that are most likely of interest to a particular user.” [Ricci+2015] Recommender Systems: Introduction and Challenges. Recommender Systems Handbook, pp. 1–34. Springer, 2015. 4
なぜ推薦システムが必要か 5
世界の本の数 129,864,880 冊 2010年8月現在 Google Books Searchブログ記事 [4] より [4]
http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) 6
YouTube 毎分 500 時間以上もの動画投稿 2022年6月現在 YouTube検索 - YouTubuのしくみ [5] より
[5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) 7
膨大なコンテンツ 世界の本の数 [4]: ※2010年8月現在 Apple Musicでの配信楽曲数 [6]: ※2022年6月現在 9,000万曲以上 129,864,880冊
Spotifyでの配信楽曲数 [7]: ※2022年6月現在 7,000万曲以上 IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 [4] http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) [6] https://www.apple.com/jp/apple-music/(2022年6月現在) [7] https://www.businessofapps.com/data/spotify-statistics/#4(2022年6月現在) [8] https://www.imdb.com/pressroom/stats/(2022年6月現在) 8
膨大なユーザ生成コンテンツ YouTube [5][9]: ※2022年6月現在 毎分 500 時間以上もの動画投稿 Twitter [10]: ※2018年5月現在
毎分 456,000 ツイート Instagram [10]: ※2018年5月現在 毎分 46,740 写真 Facebook [10]: ※2018年5月現在 毎秒 5 プロフィール [5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) [9] https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/(2022年6月現在) [10] https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/(2022年6月現在) 9
人生の持ち時間 • 人生80年とすると ◦ 80年 × 365日 = 29,200日 •
1日1本映画を観たとしても、29,200本 しか観れない • 全体のわずか 5% ほどしか消費できない IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 限られた持ち時間で本当に面白い映画だけを観たい つまらない映画は観たくない 10
コンテンツ過多(content overload) 面白いコンテンツ、感動するコンテンツが埋もれている どのようにしてそのコンテンツに巡り合うか? 11
推薦システム ユーザの行動履歴(購買履歴や閲覧履歴、評価履歴など)を基にユーザの 興味に合うコンテンツの候補を推薦リストとして提示 12
推薦システム研究の究極的課題 コンピュータは 人の嗜好を予測できるのか? 13
データ×技術による嗜好予測 データ 技術 人のコンテンツに対する嗜好を予測 コンテンツを知る 人を知る 14