Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoGenで作るLLM Agen
Search
peisuke
November 30, 2023
Technology
1
1.4k
AutoGenで作るLLM Agen
Azure OpenAI Service 生成AI実践知発表資料
peisuke
November 30, 2023
Tweet
Share
More Decks by peisuke
See All by peisuke
LangGraphで始めるマルチエージェントシステム
peisuke
13
4k
Self-RAG: Learning to Retrieve, Generate and Critique through Self-Reflections
peisuke
9
1.4k
Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
peisuke
0
9.5k
LangChain Toolsの運用と改善
peisuke
4
2.6k
GNeRF: GAN-based Neural Radiance Field without Posed Camera
peisuke
1
730
TTS Skins: Speaker Conversion via ASR
peisuke
0
370
A Quantum Computational Approach to Correspondence Problems on Point Sets
peisuke
0
670
F0-Consistent Many-to-many Non-parallel Voice Conversion via Conditional Autoencoder
peisuke
0
180
YOLACT real-time instance segmentation
peisuke
1
260
Other Decks in Technology
See All in Technology
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
350
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
540
私なりのAIのご紹介 [2024年版]
qt_luigi
1
120
How to be an AWS Community Builder | 君もAWS Community Builderになろう!〜2024 冬 CB募集直前対策編?!〜
coosuke
PRO
2
2.8k
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
110
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
750
podman_update_2024-12
orimanabu
1
280
20241220_S3 tablesの使い方を検証してみた
handy
4
610
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
190
KubeCon NA 2024 Recap / Running WebAssembly (Wasm) Workloads Side-by-Side with Container Workloads
z63d
1
250
開発生産性向上! 育成を「改善」と捉えるエンジニア育成戦略
shoota
2
390
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
How to Ace a Technical Interview
jacobian
276
23k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
We Have a Design System, Now What?
morganepeng
51
7.3k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Faster Mobile Websites
deanohume
305
30k
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
66k
Transcript
Keisuke Fujimoto (Labs) AutoGenで作るLLM Agent
自己紹介 2 所属:ABEJA Labs テーマ:ビジョン、音声、NLP、ロボット SNS X (Twitter):@peisuke Github:https://github.com/peisuke
note:https://note.com/peisuke
• LLMとLLM Agent • AutoGenについて • AutoGenでできること 本日のテーマ
3
Agentとは? 4 • 強化学習にも出てくる、「エー ジェント」 • 結果を出力するだけのMLと異 なり、環境内で行動したり操作を することが特徴
• 囲碁や将棋では・・・ ◦ (1) 盤面を観測、(2) 次の手を 考え、(3) 打つ
• LLMに対し、(1) 目的を達成するプロセス案を提示させ、(2) 各プロセスの処理の InputをLLMによって生成・処理を行い、(3) これを逐次的に実行 ◦ LLMをChatBotだけではなく、プロセス案生成やクエリ生成に利用 LLM Agentについて
5 今流行っているお 笑い芸人の動画 を見たい STEP1: 最近の流行りの芸 人を検索 STEP2: 代表的な作品名 をピックアップ STEP3: 動画ユーザーに 提示 検索モジュールの出力した結果: [XXXX、XXXX、XXXX] LLMで生成した検索クエリ: [2023年 お笑い芸人 流行] クエリを利用し、外 部の検索APIを利 用 LLMで手順を生成し、プ ログラムで読み込む
• ユーザーがやりたいことを言うとLLMがそれを全部やってくれちゃう仕組み 要するに・・・ 6 社内データを分 析したい プログラムを作っ て欲しい 動画を作って
XXXについての 情報を集めて
ChatGPTでも使われているAgentの仕組み 7 画像解析が必要なら・・・ コードの実行が必要なら・・・ ファイルの読み込みが 必要なら GPT-4V 画像を描きたい場合は 質問を投げる どの機能を使う
かを考える
マルチエージェントの仕組み 8 質問を投げる 調査します ソースコードを 作ります 結果を整理しま す
世の中の色々なAgent 9 • プログラムの自動開発の仕組み • それぞれのキャラクターが、問題を解くAgentとして行 動 • 全体を統括するCTO、開発をするエンジニア、テストを するテスターなどのAgentが存在
• 利用者が指示したゴールに基づき、要件定義〜開 発〜テスト〜納品を行い、制作物を出力
• AutoGPT 世の中の色々なAgent 10
• Voyager:マインクラフトにおいて、次にどんなアクションをするかをLLMを用いて決 定、アクションをゲーム側に伝えて動かす 世の中の色々なAgent 11
• LangChain ◦ 様々な種類のAgentが利用可能 • Llama Index ◦ Data
AgentにAgentの仕組みが実装 • AutoGen ◦ MicrosoftのAgentに特化したライブラリ ◦ 柔軟な仕組みを構築できる Agentを作るためのライブラリ 12
• AutoGen: Microsoftが提供しているOSS ◦ AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation, preprint: 2308.08155, arxiv AutoGenの紹介 13
AutoGenの紹介 14
AutoGenを使ってできること 15
AutoGenのプログラム例 16
AutoGenのプログラム例 17
AutoGenのプログラム例 18
AutoGenのプログラム例 19
• Agentの構成例 AutoGenの簡単な原理 20
• 各Agentが通信する流れ ◦ generate_replyで各Agentがレスポンスを他のエージェントに出力 AutoGenの簡単な原理 21
• Azure OpenAI APIとOpenAI APIでの切り替えが容易 AutoGenをAzureで動かしてみよう! 22
AutoGenの色々なパターン 23
• プログラムを実行 ◦ FizzBuzzのコードを書かせて実行させてみる 色々できる、AutoGen 24
• RAG + AutoGen ◦ 検索して回答が得られなかったら、自動で再検索 ◦ 回答結果が、英語になってしまった場合も日本語で出力 色々できる、AutoGen 25
Retrieve 判定 再Retrieve 判定 終了 再Retrieve 終了 Retrieve 回答生成 Retriever Agent Agent 回答 質問 仮にここが英語 でも・・・ ここで日本語で 出力される Function Calling
• プログラムのマニュアルに基づいてコードを実行 ◦ Optunaのマニュアルを読ませて、パラメータ最適化のコードを実行させた 例 色々できる、AutoGen 26
• GroupChatという機能を用いて沢山の種類のエージェントを連携 色々できる、AutoGen 27 様々な役割を持つエージェントを連携 (例) • プランナー • コーダー
• 分析者 • 調査者
標準では文字を表示するだけで、サービスに組み込めない AutoGenをサービスに組み込むために 28 文字を表示するメソッドを継承し、履歴を残すカスタムクラスを作成
状態を持っているため、Azure Functions等のサービスに利用できない AutoGenをサービスに組み込むために 29 内部状態のロード/セーブの機構を追加で開発
LLM単独の汎用性ではできないことも多い中、Agentの仕組みで将来的には色ん な作業が自動化されていく まずは、AutoGenを使うことにより、非常に面白いことができそう! まとめ 30