Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tracing for Granularity
Search
JBD
June 02, 2018
Programming
2
1.8k
Tracing for Granularity
JBD
June 02, 2018
Tweet
Share
More Decks by JBD
See All by JBD
eBPF in Microservices Observability at eBPF Day
rakyll
1
2.1k
eBPF in Microservices Observability
rakyll
1
1.7k
OpenTelemetry at AWS
rakyll
1
1.9k
Debugging Code Generation in Go
rakyll
5
1.6k
Are you ready for production?
rakyll
8
2.8k
Servers are doomed to fail
rakyll
3
1.5k
Serverless Containers
rakyll
1
250
Critical Path Analysis
rakyll
0
600
Monitoring and Debugging Containers
rakyll
2
1.1k
Other Decks in Programming
See All in Programming
AIコーディング道場勉強会#2 君(エンジニア)たちはどう生きるか
misakiotb
1
240
Kotlin エンジニアへ送る:Swift 案件に参加させられる日に備えて~似てるけど色々違う Swift の仕様 / from Kotlin to Swift
lovee
1
240
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
17
4.8k
Gleamという選択肢
comamoca
6
740
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
1
820
関数型まつり2025登壇資料「関数プログラミングと再帰」
taisontsukada
2
840
Rails産でないDBを Railsに引っ越すHACK - Omotesando.rb #110
lnit
1
170
2度もゼロから書き直して、やっとブラウザでぬるぬる動くAIに辿り着いた話
tomoino
0
160
從零到一:搭建你的第一個 Observability 平台
blueswen
1
960
Practical Tips and Tricks for Working with Compose Multiplatform Previews (mDevCamp 2025)
stewemetal
0
130
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
120
機械学習って何? 5分で解説頑張ってみる
kuroneko2828
0
220
Featured
See All Featured
Facilitating Awesome Meetings
lara
54
6.4k
Designing for humans not robots
tammielis
253
25k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Rails Girls Zürich Keynote
gr2m
94
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Scaling GitHub
holman
459
140k
Building an army of robots
kneath
306
45k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Embracing the Ebb and Flow
colly
86
4.7k
Transcript
tracing for granularity JBD, Google (@rakyll)
@rakyll
@rakyll tracing? What is tracing and why do we trace?
@rakyll
@rakyll clogged?
@rakyll leaking?
@rakyll path and direction?
@rakyll 100% availability (is a lie)
“ @rakyll A service is available if users cannot tell
there was an outage.
@rakyll Without an SLO, your team has no principled way
of saying what level of downtime is acceptable. • Error rate • Latency or throughput expectations Service Level Objectives (SLOs)
@rakyll 28 ms 100 ms 172 ms 56 ms 356
ms what user sees what else we can see sec.Check auth.AccessToken cache.Lookup spanner.Query GET /messages
@rakyll 182 ms 56 ms 245 ms what user sees
what else we can see sec.Check auth.AccessToken GET /messages 7 ms cache.Lookup
@rakyll latency...
@rakyll Go is the language to write servers. Many runtime
activities occur during the program execution: • scheduling • memory allocation • garbage collection Hard to associate a request with its impact on the runtime.
@rakyll clogged?
“ @rakyll There is no easy way to tell why
latency is high for certain requests. Is it due to GC, scheduler or syscalls? Can you review the code and tell us why? -SRE
@rakyll Execution tracer $ go tool trace • Reports fine-grained
runtime events in the lifetime of a goroutine. • Reports utilization of CPU cores. But cannot easily tell how handling a request impacts the runtime.
@rakyll 28 ms 100 ms 172 ms 56 ms 356
ms GET /messages auth.AccessToken cache.Lookup spanner.Query GET /messages
@rakyll 5 68µs 8 123µs networking serialization + deserialization garbage
collection blocking syscall what actually happens 172 ms auth.AccessToken
@rakyll 5 68µs 8 123µs epoll executing sys gc netwrite
@rakyll How? • Mark sections in code using runtime/trace. •
Enable execution tracer temporarily and record data. • Examine the recorded data.
@rakyll Go 1.11 introduces... • User regions, tasks and annotations.
• Association between user code and runtime. • Association with distributed traces.
@rakyll Go 1.11 runtime/trace import “runtime/trace” ctx, task := trace.NewTask(ctx,
“myHandler”) defer task.End() // Handler code here....
@rakyll region #1 task #1 Go 1.11 runtime/trace region #2
region #3 region #4 region #5 goroutine #1 goroutine #4 goroutine #5
@rakyll import _ "net/http/pprof" go func() { log.Println(http.ListenAndServe("localhost:6060", nil)) }()
@rakyll $ curl http://server:6060/debug/pprof/trace?seconds=5 -o trace.out $ go tool trace
trace.out 2018/05/04 10:39:59 Parsing trace... 2018/05/04 10:39:59 Splitting trace... 2018/05/04 10:39:59 Opening browser. Trace viewer is listening on http://127.0.0.1:51803
Execution tracer tasks for RPCs (/usertasks)
Execution tracer tasks for RPCs (/usertasks)
RPCs overlapping with garbage collection
Execution tracer regions (/userregions)
Region summary for conn.ready
@rakyll Record in production $ curl http://server/debug/pprof/trace?seconds=5 -o trace.out $
go tool trace trace.out
@rakyll Try It! Install the Go 1.11 beta1! golang.org/dl
@rakyll $ go get go.opencensus.io/trace import rt “runtime/trace” ctx, span
:= trace.StartSpan(ctx, “/messages”) defer span.End() rt.WithRegion(ctx, “foo”, func(ctx) { // Do something... })
@rakyll Limitations • Execution tracer cannot do accounting for cross-goroutine
operations automatically. • Exposition format is hard to parse if `go trace tool` is not used.
thank you! JBD, Google
[email protected]
@rakyll