Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[kantocv] The Perception-Distortion Tradeoff
Search
So Uchida
August 25, 2019
Research
2
1k
[kantocv] The Perception-Distortion Tradeoff
So Uchida
August 25, 2019
Tweet
Share
More Decks by So Uchida
See All by So Uchida
[CVPR2025論文読み会] Linguistics-aware Masked Image Modelingfor Self-supervised Scene Text Recognition
s_aiueo32
0
140
Adaptive Text Recognition through Visual Matching
s_aiueo32
1
1k
[cvpaper.challenge] Second-order Attention Network for Single Image Super-Resolution
s_aiueo32
0
220
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
140
業界横断 副業・兼業者の実態調査
fkske
0
220
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
180
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
160
能動適応的実験計画
masakat0
2
770
数理最適化と機械学習の融合
mickey_kubo
15
9.1k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
800
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
14
9.6k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
880
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
160
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Automating Front-end Workflow
addyosmani
1370
200k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Code Reviewing Like a Champion
maltzj
525
40k
How STYLIGHT went responsive
nonsquared
100
5.7k
Practical Orchestrator
shlominoach
190
11k
A better future with KSS
kneath
239
17k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
第54回 コンピュータビジョン勉強会@関東 The Perception-Distortion Tradeoff Presenter: @s_aiueo32
論⽂情報 ü タイトル: The Perception-Distortion Tradeoff ü 著者: Yochai Blau
and Tomer Michaeli (Technion) ü 採択状況: CVPR2018 Orals/Spotlights ü 内容 ü メトリックと知覚品質のトレードオフに関して考察 ü (トレードオフを横断するのに) GANはいいぞ
Image Restoration ü 画像の劣化(Degradation)を修復し,元の画像を再構成する問題 Super Resolution Inpain0ng Dehazing Denoising debruring
Image Restorationのゴール Low Distortion ü GTに近い画像を⽣成できればいい ü 画像間の距離で測る ü MAE,
MSE, PSNR, SSIM etc. Good Perceptual Quality ü 「⾃然」な画像を⽣成できればいい ü 単⼀画像を⽤いて計測 ü BRISQUE, NIQE etc. (本論文の主張) 2つのゴールを同時に達成することは不可能 Mr. Intuition 「距離がゼロならそれは自然な画像では?」 無理
経験的には結構⾔われてた 滑らかすぎる PSNRが 低 い !
他のアルゴリズムでの結果 両立しているモデルは存在しない Better Better 敵 「RMSEがダメなだけでは?」
他の指標での結果
ここからちょっと算数
Image Restoration ∼ # 自然画像 再構成画像 % 劣化画像 '|# )
#|' Algorithm
Distortion [Δ(, ) )] SSD, SSIM, MS-SSIM, IFC, VIF, VGG,
… ∼ # 自然画像 再構成画像 % 非負性: Δ , ≥ 0 同一律: Δ , = 0
Perceptual Quality ∼ # 自然画像 再構成画像 % Real or Fake
7899:77 ∝ =>(#, ) # ) 50% 50% ∼ ) #
Perceptual Quality (#, ) # ) TV, KL, Hellinger, @,
Renyi, Wasserstein, … ∼ # 自然画像 再構成画像 % 非負性: , ≥ 0 同一律: , = 0 ⟺ = ∼ ) #
本論⽂の問題設定 問題 → → ) 尺度の定式化 Distortion: [Δ(, ) )]
Perceptual Quality: (# , ) # ) [Δ(, ) )] (#, ) # ) このトレードオフの 存在を証明
Low Distortionは?
簡単なパラメータ推定の例 ü ノイズ を含んだ観測値 からパラメータ を推定 = + ü は次の確率質量関数に従う確率変数
#() = G H = ±1 K = 0 ü は正規分布に従う ~(0, 1) この設定でMMSEとMAP推定を行う
MMSE と MAP推定 ü MMSE ü 推定値は条件付期待値で与えられる % NNOP =
= ü ) #QQRS は確率密度 ü MAP推定 ü 事後確率最⼤のパラメータを出⼒ % NTU = argmax[∈{^H,K,H} ( = |) ü 今回の設定だとsign(⋅)と同じ
MNISTでMMSE/MAP推定した結果 ü MNISTとBlank画像を混ぜたデータでDenoising 高ノイズレベルで ぼやける 高ノイズレベルでは Blankがほとんど
トレードオフについて
Tradeoff Function ü Distortionレベルごとの下界を求める関数を定義 = min fg h|i #, )
# . . Δ , ) ≤ ü (, )がに関して凸なら, ()は単調減少&凸関数 (= Tradeoff!!) ü -divergenceはに関して凸 = + の例でのプロット
トレードオフを横断 ü ⺠「トレードオフがあるのは分かったけど, 下界に近づきたい」 ü 神「GANを使いましょう」 = min fg h|i
#, ) # . . Δ , ) ≤ ℓp:q = ℓrs7tuvtsuq + ℓxry ≈ Δ , ) + (#, ) # ) ⟷
実験 ü WGANで ∈ [0, 0.3]を変えながらDenoising ü 理論的な下界に沿って品質をコントロールできることを確認
既存のアルゴリズムの評価 ü ⾔葉の定義 ü A dominates B: AがBにDistortionでもPerceptual Qualityでも勝ってる ü
A is admissible: Aはどのアルゴリズムにもdominateされてない ü admissibleな⼿法が下界に近い⼿法
レート歪との関係 ü 許容歪に対してどれくらい圧縮できるか? ü Perception-Distortion Tradeoffと似た形 = min fg h|h
; ) s. t. Δ , ) ≤ ü レート歪とのPerception-Distortion Tradeoffの違い 1. レート歪は) #|# を考えるけど,こっちは) #|' を考える 2. ; ) はと ) の同時分布に依存するけど, #, ) # は依存しない ü 著者はICML2019にこんな論⽂通している ü “Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff”
まとめ ü DistortioinとPerceptual Qualityの間にトレードオフがある ü GAN損失の⽐率によってトレードオフ関数を横断できる ü 許容Distortionレベルを決めてから動かすのが良い ü 「最適なアルゴリズム」は応⽤依存
ü 医⽤画像はDistortion志向, 写真はPerceptual Quality志向