Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rで有名絵画を安全に買いたい
Search
saltcooky
September 16, 2022
Science
0
380
Rで有名絵画を安全に買いたい
TokyoR #101 LT
saltcooky
September 16, 2022
Tweet
Share
More Decks by saltcooky
See All by saltcooky
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
FIBA W杯の日本代表って組み合わせ次第で2次ラウンド行けたんじゃね?をデータで検証
saltcooky12
0
340
階層クラスタリングにおける仮説検定
saltcooky12
0
1.1k
データドリブンな仮説検証のためのSelective Inference
saltcooky12
1
1.4k
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
saltcooky12
0
870
Other Decks in Science
See All in Science
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
280
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
470
My Little Monster
juzishuu
0
530
凸最適化からDC最適化まで
santana_hammer
1
350
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
460
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
データマイニング - グラフデータと経路
trycycle
PRO
1
270
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
430
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
170
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
Featured
See All Featured
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
110
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Building AI with AI
inesmontani
PRO
1
660
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
400
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
610
Unsuck your backbone
ammeep
671
58k
Speed Design
sergeychernyshev
33
1.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Transcript
3Ͱ༗໊ֆըΛ҆શʹങ͍͍ͨ !TBMUDPPLZ 5PLZP3 1
୭ʁ 2 !TBMUDPPLZ • 3ྺɿ͙Β͍͔ͳ • ۈઌɿຊʹ͋Δ*5ܥͷձࣾ • ࣄ༰ɿ3%తͳ෦ॺͰ
ɹɹɹ3Λͬͨσʔλੳ͞Μ ػցֶशͷॲཧ࡞ • झຯɿϑΝογϣϯඒज़ؗ८Γ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 3 +BDLTPO1PMMPL நදݱओٛͷදతͳΞϝϦΧਓըՈ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 4 υϩοϓϖΠϯςΟϯά
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 5 ʰ/P ʱ ºNN
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 6 ʰ/P ʱ ºNN ݄ ݱඒज़࠷ߴֹ ࣌ ԯສυϧ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 7 ཉ͍͠ʂ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 8 ͚Ͳɺِଟͦ͏ʜ
ϙϩοΫͷֆըΛղੳͨ͠ݚڀ 9 • Fractal analysis of Pollock’s drip paintings.
(R.P.Taylor, et al , 1999) • On multifractal structure in non-representational art. (J.R.Nureika, et al , 2005) ˠϙϩοΫͷυϩοϓϖΠϯςΟϯάʹ ϑϥΫλϧߏ͕͋Δ͜ͱ͕Θ͔Δ
ϑϥΫλϧߏ 10 ਤܗͷҰ෦Λ֦େ͢Δͱɺશମͱ૬ࣅ͢Δܗ ࣗݾ૬ࣅੑ ͕ଘࡏ͢Δߏ FYγΣϧϐϯεΩʔͷΪϟεέοτ
ϑϥΫλϧ࣍ݩ ༰ྔ࣍ݩϋυϧϑ࣍ݩ 11 w ͲΕ͚ͩࣗݾ૬ࣅੑ͕͋Δ͔Λࣔ͢ྔ w ֤ۭؒํʹ-ʹॖΊΔͱɺͱͷਤܗΛຒΊΔʹ/-%ݸ ͷࣗݾ૬ࣅਤܗ͕ඞཁͱ͍͏͜ͱΛදݱ w
ʙͷؒΛͱΓɺʹ͍ۙ΄Ͳࣗݾ૬ؔੑ͕ڧ͍ w γΣϧϐϯεΩʔͷΪϟεέοτͷ࣍ݩ w ղੳతʹ#PY$PVOUJOHΞϧΰϦζϜʹΑΓਪఆ
#PY$PVOUJOHΞϧΰϦζϜ 12 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 13 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 14 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̎ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 15 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫେ͖͞-Λখͯ͘͞͠ରը૾Λ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 16 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 17 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ େ͖͞-Λখ͘͞͠ͳ͕Βର͕өΔϒϩοΫΛΧϯτ͢Δ ɹ͜ͱΛ܁Γฦ͢
#PY$PVOUJOHΞϧΰϦζϜ 18 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫͷେ͖͞-ͱΧϯτ/ - ͷ྆ରάϥϑʹ͓͚Δ ɹճؼઢͷ͖͕ϑϥΫλϧ࣍ݩʹͳΔ log N(L)
= D log(L) + K ʢ,ఆʣ MPH/ - MPH- ޯ%ʹ ϑϥΫλϧ࣍ݩ
19 w ͳͥ͜ΕͰϑϥΫλϧ࣍ݩΛਪఆ͢Δ͜ͱ͕Ͱ͖Δͷ͔ ఆ͔ٛΒͷมܗ log N(L) = log( a
L )D log N(L) = D log(L) + D log(a) #PY$PVOUJOHΞϧΰϦζϜ ʢBɿਖ਼ͷఆʣ
20 δϟΫιϯϙϩοΫͷ࡞ͷ߹ w -DNͰϑϥΫλϧ࣍ݩ͕มԽ w %% -Ҏ্ %- -ະຬ ʰ#MVF1PMFT/VNCFS
ʱ MPH - NN MPH / #PY$PVOUJOHΞϧΰϦζϜ
ϙϩοΫͷֆըͷಛ 21 ʢ̍ʣ̎छͷϑϥΫλϧύλʔϯ͔ΒΔ ʢ̎ʣ༷ʑͳεέʔϧʹ͓͍ͯϑϥΫλϧੑ͕ଘࡏ ʢ̏ʣϑϥΫλϧ࣍ݩରάϥϑͷޯ͔ΒٻΊΕΔ ʢ̐ʣ%-ʼ%% ʢ̑ʣۙࣅۂઢͷඪ४ภ͕ࠩখ͍͞ d ʢ̒ʣ֤৭ͷͰ্هͷ̑ͭͷಛΛຬͨ͢
3Ͱ#PY$PVOUJOH 22 7PY31BDLBHF
3Ͱ#PY$PVOUJOH 23 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ը૾ॲཧ
3Ͱ#PY$PVOUJOH 24 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ϑϥΫλϧ࣍ݩΛٻΊΔ
3Ͱ#PY$PVOUJOH 25 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ྆ରάϥϑͱճؼઢͷՄࢹԽ 0 2 4 6 8 -7
-6 -5 -4 -3 -2 log(1/res) log(N) Box Counting method : D=1.5747
؆୯ʹ·ͱΊ 26 w δϟΫιϯϙϩοΫͷֆըʹϑϥΫλϧߏ͕ଘࡏ͢Δ w ϑϥΫλϧߏͷϑϥΫλϧ࣍ݩΛղੳతʹٻΊΔͨΊʹ ɺ#PY$PVOUJOHΞϧΰϦζϜΛ༻͍Δ w
3Ͱ7PY3QBDLBHFͷCPY@DPVOUJOHؔͰ࣮ߦͰ͖Δ
&/% 27 &OKPZ
ࢀߟࢿྉ 28 •RʹΑΔը૾ॲཧɿimagerύοέʔδͷ͍ํ https://htsuda.net/archives/1985 •ϘοΫεΧϯτ๏ʹΑΔඐഀބͷϑϥΫλϧ࣍ݩ https://shiga-u.repo.nii.ac.jp/?action=repository_uri&item_id=1751