Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rで有名絵画を安全に買いたい
Search
saltcooky
September 16, 2022
Science
0
340
Rで有名絵画を安全に買いたい
TokyoR #101 LT
saltcooky
September 16, 2022
Tweet
Share
More Decks by saltcooky
See All by saltcooky
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
200
FIBA W杯の日本代表って組み合わせ次第で2次ラウンド行けたんじゃね?をデータで検証
saltcooky12
0
330
階層クラスタリングにおける仮説検定
saltcooky12
0
1k
データドリブンな仮説検証のためのSelective Inference
saltcooky12
1
1.4k
ストリートスナップデータに 統計的ネットワーク分析の適用を試みた
saltcooky12
0
860
Other Decks in Science
See All in Science
Accelerated Computing for Climate forecast
inureyes
0
120
研究って何だっけ / What is Research?
ks91
PRO
1
130
データベース02: データベースの概念
trycycle
PRO
2
920
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
530
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
100
Machine Learning for Materials (Challenge)
aronwalsh
0
340
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
580
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
290
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
知能とはなにかーヒトとAIのあいだー
tagtag
0
140
2025-06-11-ai_belgium
sofievl
1
170
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Featured
See All Featured
Fireside Chat
paigeccino
40
3.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
970
Thoughts on Productivity
jonyablonski
70
4.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Designing for humans not robots
tammielis
254
26k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Optimizing for Happiness
mojombo
379
70k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
What's in a price? How to price your products and services
michaelherold
246
12k
Done Done
chrislema
185
16k
Transcript
3Ͱ༗໊ֆըΛ҆શʹങ͍͍ͨ !TBMUDPPLZ 5PLZP3 1
୭ʁ 2 !TBMUDPPLZ • 3ྺɿ͙Β͍͔ͳ • ۈઌɿຊʹ͋Δ*5ܥͷձࣾ • ࣄ༰ɿ3%తͳ෦ॺͰ
ɹɹɹ3Λͬͨσʔλੳ͞Μ ػցֶशͷॲཧ࡞ • झຯɿϑΝογϣϯඒज़ؗ८Γ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 3 +BDLTPO1PMMPL நදݱओٛͷදతͳΞϝϦΧਓըՈ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 4 υϩοϓϖΠϯςΟϯά
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 5 ʰ/P ʱ ºNN
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 6 ʰ/P ʱ ºNN ݄ ݱඒज़࠷ߴֹ ࣌ ԯສυϧ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 7 ཉ͍͠ʂ
δϟΫιϯϙϩοΫΛ͍ͬͯ·͔͢ 8 ͚Ͳɺِଟͦ͏ʜ
ϙϩοΫͷֆըΛղੳͨ͠ݚڀ 9 • Fractal analysis of Pollock’s drip paintings.
(R.P.Taylor, et al , 1999) • On multifractal structure in non-representational art. (J.R.Nureika, et al , 2005) ˠϙϩοΫͷυϩοϓϖΠϯςΟϯάʹ ϑϥΫλϧߏ͕͋Δ͜ͱ͕Θ͔Δ
ϑϥΫλϧߏ 10 ਤܗͷҰ෦Λ֦େ͢Δͱɺશମͱ૬ࣅ͢Δܗ ࣗݾ૬ࣅੑ ͕ଘࡏ͢Δߏ FYγΣϧϐϯεΩʔͷΪϟεέοτ
ϑϥΫλϧ࣍ݩ ༰ྔ࣍ݩϋυϧϑ࣍ݩ 11 w ͲΕ͚ͩࣗݾ૬ࣅੑ͕͋Δ͔Λࣔ͢ྔ w ֤ۭؒํʹ-ʹॖΊΔͱɺͱͷਤܗΛຒΊΔʹ/-%ݸ ͷࣗݾ૬ࣅਤܗ͕ඞཁͱ͍͏͜ͱΛදݱ w
ʙͷؒΛͱΓɺʹ͍ۙ΄Ͳࣗݾ૬ؔੑ͕ڧ͍ w γΣϧϐϯεΩʔͷΪϟεέοτͷ࣍ݩ w ղੳతʹ#PY$PVOUJOHΞϧΰϦζϜʹΑΓਪఆ
#PY$PVOUJOHΞϧΰϦζϜ 12 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 13 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̍ରը૾ΛҰลͷ͕͞-ͷϒϩοΫʹ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 14 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ̎ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 15 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫେ͖͞-Λখͯ͘͞͠ରը૾Λ͚Δ
#PY$PVOUJOHΞϧΰϦζϜ 16 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ର͕өΓࠐΜͰ͍ΔϒϩοΫͷ/ - Λ͑Δ
#PY$PVOUJOHΞϧΰϦζϜ 17 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ େ͖͞-Λখ͘͞͠ͳ͕Βର͕өΔϒϩοΫΛΧϯτ͢Δ ɹ͜ͱΛ܁Γฦ͢
#PY$PVOUJOHΞϧΰϦζϜ 18 ϑϥΫλϧ࣍ݩΛٻΊΔྲྀΕ ϒϩοΫͷେ͖͞-ͱΧϯτ/ - ͷ྆ରάϥϑʹ͓͚Δ ɹճؼઢͷ͖͕ϑϥΫλϧ࣍ݩʹͳΔ log N(L)
= D log(L) + K ʢ,ఆʣ MPH/ - MPH- ޯ%ʹ ϑϥΫλϧ࣍ݩ
19 w ͳͥ͜ΕͰϑϥΫλϧ࣍ݩΛਪఆ͢Δ͜ͱ͕Ͱ͖Δͷ͔ ఆ͔ٛΒͷมܗ log N(L) = log( a
L )D log N(L) = D log(L) + D log(a) #PY$PVOUJOHΞϧΰϦζϜ ʢBɿਖ਼ͷఆʣ
20 δϟΫιϯϙϩοΫͷ࡞ͷ߹ w -DNͰϑϥΫλϧ࣍ݩ͕มԽ w %% -Ҏ্ %- -ະຬ ʰ#MVF1PMFT/VNCFS
ʱ MPH - NN MPH / #PY$PVOUJOHΞϧΰϦζϜ
ϙϩοΫͷֆըͷಛ 21 ʢ̍ʣ̎छͷϑϥΫλϧύλʔϯ͔ΒΔ ʢ̎ʣ༷ʑͳεέʔϧʹ͓͍ͯϑϥΫλϧੑ͕ଘࡏ ʢ̏ʣϑϥΫλϧ࣍ݩରάϥϑͷޯ͔ΒٻΊΕΔ ʢ̐ʣ%-ʼ%% ʢ̑ʣۙࣅۂઢͷඪ४ภ͕ࠩখ͍͞ d ʢ̒ʣ֤৭ͷͰ্هͷ̑ͭͷಛΛຬͨ͢
3Ͱ#PY$PVOUJOH 22 7PY31BDLBHF
3Ͱ#PY$PVOUJOH 23 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ը૾ॲཧ
3Ͱ#PY$PVOUJOH 24 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ϑϥΫλϧ࣍ݩΛٻΊΔ
3Ͱ#PY$PVOUJOH 25 γΣϧϐϯεΩʔͷΪϟεέοτͷϑϥΫλϧ࣍ݩΛٻΊΔ ྆ରάϥϑͱճؼઢͷՄࢹԽ 0 2 4 6 8 -7
-6 -5 -4 -3 -2 log(1/res) log(N) Box Counting method : D=1.5747
؆୯ʹ·ͱΊ 26 w δϟΫιϯϙϩοΫͷֆըʹϑϥΫλϧߏ͕ଘࡏ͢Δ w ϑϥΫλϧߏͷϑϥΫλϧ࣍ݩΛղੳతʹٻΊΔͨΊʹ ɺ#PY$PVOUJOHΞϧΰϦζϜΛ༻͍Δ w
3Ͱ7PY3QBDLBHFͷCPY@DPVOUJOHؔͰ࣮ߦͰ͖Δ
&/% 27 &OKPZ
ࢀߟࢿྉ 28 •RʹΑΔը૾ॲཧɿimagerύοέʔδͷ͍ํ https://htsuda.net/archives/1985 •ϘοΫεΧϯτ๏ʹΑΔඐഀބͷϑϥΫλϧ࣍ݩ https://shiga-u.repo.nii.ac.jp/?action=repository_uri&item_id=1751