Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Cloud-Nativeなデータ分析基盤におけるPrestoの活用 / Cloud-Nati...
Search
satoshihirose
March 14, 2019
Programming
1
9.1k
Cloud-Nativeなデータ分析基盤におけるPrestoの活用 / Cloud-Native Data Infrastructure with Presto
Hadoop / Spark Conference Japan 2019で話した資料です。
http://hadoop.apache.jp/hcj2019-program/
satoshihirose
March 14, 2019
Tweet
Share
More Decks by satoshihirose
See All by satoshihirose
生成AIで実現するText-to-SQL入門
satoshihirose
5
710
メタデータ管理と生成AI ~ COMETAのこれまでとこれから ~
satoshihirose
0
110
顧客に価値を届け続けられる プロダクトであるために ~B2B SaaSにおいてプロダクトビジョン・戦略を改めて 策定するまでの道のり~
satoshihirose
2
880
Data Product Manager? / データプロダクトマネージャーとは?
satoshihirose
3
28k
Overview of The Modern Data Stack / モダンデータスタック概論
satoshihirose
11
8.5k
Data Engineering at SmartNews
satoshihirose
4
3.1k
Other Decks in Programming
See All in Programming
Vibe Codingの幻想を超えて-生成AIを現場で使えるようにするまでの泥臭い話.ai
fumiyakume
18
8.8k
Goで作る、開発・CI環境
sin392
0
270
Claude Code で Astro blog を Pages から Workers へ移行してみた
codehex
0
130
知って得する@cloudflare_vite-pluginのあれこれ
chimame
1
100
ソフトウェア品質を数字で捉える技術。事業成長を支えるシステム品質の マネジメント
takuya542
2
16k
AI時代の『改訂新版 良いコード/悪いコードで学ぶ設計入門』 / ai-good-code-bad-code
minodriven
24
9.9k
フロントエンドのパフォーマンスチューニング
koukimiura
6
2.2k
Claude Code + Container Use と Cursor で作る ローカル並列開発環境のススメ / ccc local dev
kaelaela
12
7.3k
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
16
5.8k
High-Level Programming Languages in AI Era -Human Thought and Mind-
hayat01sh1da
PRO
0
910
AIともっと楽するE2Eテスト
myohei
9
3.1k
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
300
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Become a Pro
speakerdeck
PRO
29
5.4k
The Pragmatic Product Professional
lauravandoore
35
6.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Done Done
chrislema
184
16k
Transcript
2019-03-14 Data Engineer, SmartNews Inc 廣瀬 智史 Cloud-Nativeなデータ分析基盤 におけるPrestoの活用 Hadoop
/ Spark Conference Japan 2019
None
None
None
データの活用(データ分析、機械学習) 例: ニュース(記事+動画)配信 • 記事+動画のカテゴライズ • フィードにおけるレコメンド 例: 広告配信 •
様々な配信最適化 例: データサイエンス • 経営指標の計算や予測
• 当時の構成 ◦ MapReduce(mrjob) + MongoDB • 課題 ◦ 集計処理が必要になるたびに
MapReduce処理を追加する必要が あった ◦ 見たいデータを追加するたびに可視 化のためのウェブアプリを修正する必 要があった ◦ データを気軽に分析できる環境では なかった 2014年当時のSmartNewsデータ基盤の構成と課題 in-house visualization web application
Hadoop Conference in Japan 2014 • Facebookが公開したSQL Query Engine •
大規模データセットに対してもイ ンタラクティブなレスポンスを返 す • Presto自身はデータストレージ を持っていない • 複数のデータソース(Hive, Cassandra, MySQL, etc…)に 対して一度に集計を実行するこ とができる https://tug.red/entry/2014/07/10/150250/
Presto/Hiveの導入 • 変更後の構成 ◦ S3 + Presto + Hive •
コンセプト ◦ ETLバッチ処理はHive, リアルタイム データ集計はPresto ◦ ストレージとコンピューテーションリソー スを分離 ◦ SQLを書ければ誰でもデータ分析がで きるようにする BI Tools, CLI, Data Application
EMR+S3によるCloud-Nativeなデータ分析基盤 [メリット] • Less Maintenance: マネージドサービスを 活用することで運用を少なく • Elasticity: long
runningなHadoopクラスタ の他にも、必要に応じてtransientなHadoop クラスタを活用できる。ワークロードに応じて クラスターの規模を増減できる • DevOps: 用途やチームに応じてクラスター を使い分けることで、依存性が局所化され、 チームがownershipを持てる 広告配信 チーム Hive MetaStore multi EMR clusters S3 Buckets ニュース配信 チーム multi EMR clusters S3 Buckets Hive MetaStore
EMR+S3によるCloud-Nativeなデータ分析基盤 [デメリット] • マルチクラスター化によって複数のHive MetaStore Databaseにデータが分散してし まい、それらを跨いだ集計処理が難しくなる 広告配信 チーム Hive
MetaStore multi EMR clusters S3 Buckets ニュース配信 チーム multi EMR clusters S3 Buckets Hive MetaStore
• データが分散して存在しまう状況への 対応 ◦ Prestoをインターフェイスにするこ とで複数のデータソースにまた がった集計が可能に other Applications CLI
Hive(Ads) Hive(News) other databases PrestoによるData Aggregation BI Tool
• EMRを使うのではなく、EC2上にクラス ターを構築している • 負荷状況によりworkerをオートスケール させ、利用状況の増減に対応している • 利用用途により、複数のクラスターが存 在する ◦
一部では今年2月にリリースされた version 302を使い始めている Prestoの活用(1)
• defaultのPrestoには存在しないコネクターの追加や、独自のファンクション の追加を行なっている ◦ 例: Kinesis connector ◦ 例: fast
JSON extraction function ◦ 例: AWS function ▪ ddb_get() Prestoの活用(2) Table Name
• PrestoやHiveのバージョンアップに追従する仕組みの整備 ◦ 検証環境の整備など • 監視の強化 ◦ 問題のあるクエリの実行検知 ◦ ETL処理結果のvalidation
◦ SLI/SLOの設定 • データフォーマットや設定の最適化 ◦ RCFile から ORC への移行など • Streaming Processingの拡充 SmartNewsデータ分析基盤の課題と今後
Presto Software Foundationの設立 • 2019年1月にPrestoの開発コミュニ ティをサポートするためStarburst Data, Arm Treasure Data,
Qubole などのengineerにより設立 • 今後はこれまでのprestodb/presto (2019/3時点最新バージョンが 0.217)がprestosql/presto(2019/3時 点最新バージョンが305)に分岐し、開 発が進んでいく
まとめ • SmartNewsでは、EMRとS3を使用したCloud-Nativeなデータ処理基盤を、 Hive/Prestoを活用することで実現している • Hiveを中心としたETL処理により、エンジニア以外もロジックの実装に参加で きるようになった • Prestoを活用することで、社内の様々なデータをSQLによって集計し、分析 できるようになった
• transientなクラスターを活用するなど、メンテナンスコストを下げることを意識 し、それぞれのチームごとのOwnershipを持って開発を進めることができる
Thank you!