Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
エンジニアメンター制度の効果的な運用を目指して/improve-mentor-system
Search
shibayu36
April 16, 2019
Technology
27
10k
エンジニアメンター制度の効果的な運用を目指して/improve-mentor-system
shibayu36
April 16, 2019
Tweet
Share
More Decks by shibayu36
See All by shibayu36
今の生産性改善活動で大切にしている考え方
shibayu36
8
8.5k
グレードイメージ具体化のため昇格理由を公開する
shibayu36
8
5.8k
新機能作成時に開発ブランチに細かくmergeしていく戦略/merge-strategy-for-new-feature
shibayu36
6
17k
一から始めるJavaScriptユニットテスト/js-unit-test-from-scratch
shibayu36
8
33k
技術ブログを書くことについて/writing-tech-blog
shibayu36
17
26k
はてなと技術研修
shibayu36
1
6.4k
はてなブログチームの開発フローとGitHub
shibayu36
145
76k
課題をテストで解決する
shibayu36
2
2.3k
Fluentd, mongoDB, Kibanaを利用したはてなブログABテストの事例
shibayu36
30
12k
Other Decks in Technology
See All in Technology
お問い合わせ対応の改善取り組みとその進め方
masartz
1
350
SaaSプロダクト開発におけるバグの早期検出のためのAcceptance testの取り組み
kworkdev
PRO
0
410
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
日本MySQLユーザ会ができるまで / making MyNA
tmtms
1
350
Dapr For Java Developers SouJava 25
salaboy
1
130
Amazon GuardDuty Malware Protection for Amazon S3を使おう
ryder472
2
100
Vision Language Modelを活用した メルカリの類似画像レコメンドの性能改善
yadayuki
9
1.2k
OPENLOGI Company Profile
hr01
0
61k
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
430
Redefine_Possible
upsider_tech
0
240
Keynote - KCD Brazil - Platform Engineering on K8s (portuguese)
salaboy
0
120
Amazon Q Developer 他⽣成AIと⽐較してみた
takano0131
1
120
Featured
See All Featured
Faster Mobile Websites
deanohume
306
31k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
28
1.6k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Docker and Python
trallard
44
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
11
610
Embracing the Ebb and Flow
colly
85
4.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
700
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The World Runs on Bad Software
bkeepers
PRO
67
11k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Optimising Largest Contentful Paint
csswizardry
35
3.2k
Transcript
ΤϯδχΞϝϯλʔ੍ͷ ޮՌతͳӡ༻Λࢦͯ͠ @shiba_yu36 2019/04/16 Engineering Manager Meetup #5
ࣗݾհ • @shiba_yu36 • https://blog.shibayu36.org/ • ͯͳͷνʔϑΤϯδχΞɻٕज़৫શମΛݟΔ • ͍ΘΏΔEMͰͳ͍͕ɺ͍ۙΈͷ͕Ͱ͖Δͱࢥ͏
None
None
ಥવͰ͕͢ɺEMΛ͍ͬͯͯ ͜Μͳ͜ͱΛࢥͬͨ͜ͱ͋Γ·ͤΜ͔ʁ
• ॳΊͯϚωʔδϟʹͳ͚ͬͨͲ·ͣԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • ඪઃఆɺ1on1ɺධՁͳͲΛ͍ͬͯΔ͚ͲखԠ͕͑ͳ͍ • ͦͦͲ͏ͬͯΈΛղܾ͍ͯͬͨ͠Βྑ͍ͷ͔͔ Βͳ͍ • ϚωʔδϟεΩϧΛͲ͏ʹ͚ͭͨΒΑ͍͔͔Βͳ͍ •
(Manager of Managerࢹ): ϚωʔδϟεΩϧΛͲ͏ͬͯԣల ։͍͚ͯ͠Α͍ͷ͔͔Βͳ͍
શ෦ࢥͬͨ͜ͱ͕ ͋Γ·͢ʂ
ͯͳͷνʔϜԣஅͷ ΤϯδχΞϝϯλʔ੍Ͱ ಉ͡՝͕͋Γ·ͨ͠
ࠓͦͷ՝ΛͲ͏վળ ͍͔ͯͬͨ͠Λհ͠·͢
ΞδΣϯμ • ͯͳͷνʔϜԣஅͷΤϯδχΞϝϯλʔ੍ͱ • ࣮ࡍʹͲͷΑ͏ͳ՝͕͔͋ͬͨ • ͲͷΑ͏ʹվળ͔ͨ͠ • վળࢪࡦʹΑΓ࠷ऴతʹͲ͏ͳ͔ͬͨ
ΞδΣϯμ • ͯͳͷνʔϜԣஅͷΤϯδχΞϝϯλʔ੍ͱ • ࣮ࡍʹͲͷΑ͏ͳ՝͕͔͋ͬͨ • ͲͷΑ͏ʹվળ͔ͨ͠ • վળࢪࡦʹΑΓ࠷ऴతʹͲ͏ͳ͔ͬͨ
ͯͳͷΤϯδχΞϝϯλʔ੍ https://developer.hatenastaff.com/entry/2018/05/30/173000
νʔϜԣஅͷϝϯλʔ੍ • (എܠ: ΤϯδχΞɺνʔϜ) • શͯͷΤϯδχΞʹϝϯλʔ͕Ұਓ • ৽ଔɾத్ɺೖࣾͷؔ͞ͳ͠ • νʔϜ֎ͷνʔϑ/γχΞΤϯδχΞ͕ϝϯλʔʹ
• νʔϑ/γχΞ؇͍ϐϥϛουߏ
νʔϜԣஅͷϝϯλʔ੍ • ׂղܾࢧԉɺࢧԉɺઐੑධՁ • ඪઃఆɾຖ݄ͷ1on1ɾධՁͳͲΛ௨ͯ͡ୡ ͢Δ
νʔϜ֎ʹஔ͘ͶΒ͍ • νʔϜ֎ʹ૬ஊઌΛ࡞Γ͍ͨ • νʔϜͰτϥϒϧ͕͋ͬͯ૬ஊ͘͢͠ • νʔϜ֎ͷҧ͏ࢹ͔ΒҙݟΛަ • ࢹɺೝϑϨʔϜΛ͛Δ
νʔϜ֎ʹஔ͘ͶΒ͍ • ಘҙͳਓʹ͓ئ͍͍͢͠ • νʔϜʹಘҙͳਓ͕͍ͳͯ͘ରԠͰ͖Δ • ผνʔϜؒͷใڞ༗ͷͱͯ͠
͋ΔCTO͔Β Φʔμʔ͕
ࠓͷϝϯλʔ੍ͩͱɺޮՌతʹղܾɺ ࢧԉ͕ग़དྷ͍ͯͳ͍Α͏ʹײ͡Δ վળͯ͠Α
ࠓͷϝϯλʔ੍ͩͱɺޮՌతʹղܾɺ ࢧԉ͕ग़དྷ͍ͯͳ͍Α͏ʹײ͡Δ վળͯ͠Α ͍͍ײ͡ʹΓ·͢ʂ
ΞδΣϯμ • ͯͳͷνʔϜԣஅͷΤϯδχΞϝϯλʔ੍ͱ • ࣮ࡍʹͲͷΑ͏ͳ՝͕͔͋ͬͨ • ͲͷΑ͏ʹվળ͔ͨ͠ • վળࢪࡦʹΑΓ࠷ऴతʹͲ͏ͳ͔ͬͨ
ຊʹ՝͕ଘࡏ͢Δ͔ʁ
՝ൃݟͷͨΊϝϯλʔʹΞϯέʔτ • γχΞͷׂ͝ͱͷखԠ͑Λڭ͍͑ͯͩ͘͞(5ຬ) • ղܾࢧԉ • ࢧԉ • దͳධՁ •
ϝϯλʔͷαϙʔτΓ͍ͯ·͔͢ʁ • ଞ͍Ζ͍Ζهड़ཝ(ࠔͬͨ͜ͱͱ͔ɺ͏·͍ͬͨ͘͜ͱͱ͔)
݁Ռ…?
None
None
None
None
• ϝϯλʔ͕ΊͬͪΌࠔͬͯΔ… • ͜ͷௐࢠͩͱ • ޮՌతʹϝϯλʔ੍͕ӡ༻Ͱ͖ͳ͍ • ϝϯλʔΛ૿ͤͣɺ৫εέʔϧ͠ͳ͍ʂ
՝ੳΛ͢Δ
ΞϯέʔτΛੳ͢Δͱɺ ͍͔ͭ͘ͷ՝͕ݟ͔ͭͬͨ
՝ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍
՝ੳͰ͖ͨͷͰ ͋ͱվળͯ͜͠
ΞδΣϯμ • ͯͳͷνʔϜԣஅͷΤϯδχΞϝϯλʔ੍ͱ • ࣮ࡍʹͲͷΑ͏ͳ՝͕͔͋ͬͨ • ͲͷΑ͏ʹվળ͔ͨ͠ • վળࢪࡦʹΑΓ࠷ऴతʹͲ͏ͳ͔ͬͨ
վળࡦΛࡾͭߟ͑ͨ • ϚχϡΞϧɺਪનॻ੶ɺͦͯ͠ಋೖձ • ϝϯλʔάϧʔϓձ • ϑΟʔυόοΫΞϯέʔτ
վળࡦΛࡾͭߟ͑ͨ • ϚχϡΞϧɺਪનॻ੶ɺͦͯ͠ಋೖձ • ϝϯλʔάϧʔϓձ • ϑΟʔυόοΫΞϯέʔτ
ϚχϡΞϧɺਪનॻ੶ɺ ͦͯ͠ಋೖձ
Ծઆ • ׂۀ༰Λ໌֬ʹ͠ɺಋೖձΛ͢Εɺ৽ ͍͠ϝϯλʔ͕࢝Ί͘͢ͳΔͷͰ • ਪનॻ੶Λ·ͱΊΔ͜ͱͰɺʹ͚ΔεΩϧͷ ࢦΛ࡞ΕΔͷͰ
Ծઆ • ׂۀ༰Λ໌֬ʹ͠ɺಋೖձΛ͢Εɺ৽ ͍͠ϝϯλʔ͕࢝Ί͘͢ͳΔͷͰ • ਪનॻ੶Λ·ͱΊΔ͜ͱͰɺʹ͚ΔεΩϧͷ ࢦΛ࡞ΕΔͷͰ ϚχϡΞϧ࡞Γɺਪનॻ੶બఆɺ ৽ϝϯλʔͷಋೖձΛͪΌΜͱΖ͏
ʲ࠶ܝʳ՝ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍
՝ͷதͰղܾͰ͖ͦ͏ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍ ϚχϡΞϧͱಋೖʹΑΔղܾ ॻ੶Ͱͷͱ͔͔ͬΓఏڙͰͷղܾ
ϝϯλʔͷׂͱ ۀυΩϡϝϯτͷ࡞ • ׂͷ໌֬Խ • ۀ༰ͷ໌֬Խ • ࠷ॳͷͱ͔͔ͬΓͷਪનॻ੶
None
None
None
ಋೖձ • υΩϡϝϯτΛઌʹಡΜͰɺ࣭Λߟ͓͍͑ͯͯΒ͏ • ৽ϝϯλʔΛશһݺΜͰ࣭λΠϜΛߦ͏ • ͔ͬͪ͜Βઆ໌͠·͘Βͳ͍
(ࢪࡦͷ࣮ࡍͷޮՌޙड़͠·͢)
ϝϯλʔάϧʔϓձ
վળࡦΛࡾͭߟ͑ͨ • ϚχϡΞϧɺਪનॻ੶ɺͦͯ͠ಋೖձ • ϝϯλʔάϧʔϓձ • ϑΟʔυόοΫΞϯέʔτ
Ծઆ • ϝϯλʔಉ࢜ͷ͢ػձ͕গͳ͍ͨΊɺؾܰͳ૬ஊ͕Ͱ͖ͳ͍ͷͰ • ૬ஊͰ͖ͳ͍ͱਏ͍͠ɺҰਓͰղܾग़དྷͳ͍ʹରॲͰ͖ͳ͍ • ϝϯλʔಉ࢜ͷަྲྀ͕গͳ͍ͨΊɺࣗવͳεΩϧԣల։͕͞Εͳ͍ ͷͰ
Ծઆ • ϝϯλʔಉ࢜ͷ͢ػձ͕গͳ͍ͨΊɺؾܰͳ૬ஊ͕Ͱ͖ͳ͍ͷͰ • ૬ஊͰ͖ͳ͍ͱਏ͍͠ɺҰਓͰղܾग़དྷͳ͍ʹରॲͰ͖ͳ͍ • ϝϯλʔಉ࢜ͷަྲྀ͕গͳ͍ͨΊɺࣗવͳεΩϧԣల։͕͞Εͳ͍ ͷͰ άϧʔϓձͱ͍͏ձٞମΛ࡞ͬͯձ͢ΔΛ໌ࣔతʹ࡞Ζ͏
ʲ࠶ܝʳ՝ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍
՝ͷதͰղܾͰ͖ͦ͏ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍ εΩϧͷԣల։ʹΑΔղܾ ૬ஊॴΛ࡞ͯ͠ղܾ
ϝϯλʔάϧʔϓձΛ݁ • ݄1Ͱू·ͬͯ1࣌ؒձ͢Δ • ϝϯςΟʔͷղܾ͍ͯ͠ͳ͍՝ɾؾʹͳΔ͜ͱΛڞ ༗͍͋͠ɺղܾҊΛ૬ஊ͢Δ • ղܾͰ͖ͳ͚Ε্ҐϨΠϠʔ(νʔϑ) • ϝϯλʔͱͯ͠ͷࠔΓ͝ͱ૬ஊ
& ݟڞ༗ͷ
ϝϯλʔάϧʔϓձΛ݁ • 4~5ਓͣͭͰϝϯλʔάϧʔϓձΛ݁ • νʔϑ1ɺγχΞ3~4 • ࠷ॳ2άϧʔϓ
ձͰ͢͜ͱ • લճͷΞΫγϣϯɾνʔϑʹ্͛ͨʹ͍ͭͯ • ϝϯςΟʔͷղܾ͍ͯ͠ͳ͍ɾؾʹͳΓ͝ͱ • ɾݟڞ༗ • ࣍ͷΞΫγϣϯ
(ࢪࡦͷ࣮ࡍͷޮՌޙड़͠·͢)
ϑΟʔυόοΫΞϯέʔτ
վળࡦΛࡾͭߟ͑ͨ • ϚχϡΞϧɺਪનॻ੶ɺͦͯ͠ಋೖձ • ϝϯλʔάϧʔϓձ • ϑΟʔυόοΫΞϯέʔτ
Ծઆ • ϝϯςΟʔ͔ΒཱͬͨମݧΛฉ͘ػձ͕ͳ͍ͨ Ίɺཱ࣮͍ͬͯͯखԠ͑Λײ͡ΒΕͳ͍ͷͰ • ϝϯςΟʔ͔ΒͷվળཁΛฉ͘ػձ͕ͳ͍ͨΊɺ ϑΟʔυόοΫ͔Βͷվળ͕Ͱ͖ͳ͍ͷͰ
Ծઆ • ϝϯςΟʔ͔ΒཱͬͨମݧΛฉ͘ػձ͕ͳ͍ͨ Ίɺཱ࣮͍ͬͯͯखԠ͑Λײ͡ΒΕͳ͍ͷͰ • ϝϯςΟʔ͔ΒͷվળཁΛฉ͘ػձ͕ͳ͍ͨΊɺ ϑΟʔυόοΫ͔Βͷվળ͕Ͱ͖ͳ͍ͷͰ ఆظతʹϝϯςΟʔ͔ΒҙݟΛΒ͏͜ͱͰղܾ͍ͨ͠
ʲ࠶ܝʳ՝ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍
՝ͷதͰղܾͰ͖ͦ͏ • ϝϯλʔͱͳͬͨ࣌ɺ࠷ॳԿΛͨ͠Β͍͍͔ͬ͞ͺΓ • Ͳ͏͍͏εΩϧΛʹ͚ͭΕΑ͍͔͔Βͳ͍ • ϝϯλʔಉ࢜ͷͭͳ͕Γ͕ͳ͘ɺղܾͰ͖ͳ͍Λ ૬ஊͰ͖ͳ͍ • ϝϯςΟʔͷʹཱ͍ͬͯΔͷ͔͕அͰ͖ͣɺϝϯ
λʔ͕खԠ͑Λײͯ͡ͳ͍ ϑΟʔυόοΫ͔ΒͷվળʹΑΔղܾ ϑΟʔυόοΫͰͷߩݙ࣮ײʹΑΔղܾ
ϑΟʔυόοΫΞϯέʔτ • ʹҰϝϯςΟʔશһʹૹ৴ • ಗ໊Ͱɺίϝϯτه໊Ͱϝϯλʔʹڞ༗ • Google FormͰ࡞
Ξϯέʔτ߲ • ϝϯλϦϯάΛ௨ͯ͠ࠔΓ͝ͱɾؾʹͳΓ͝ͱͷղܾͷ ͖͔͚ͬΛಘΒΕ·͔ͨ͠ʁ (5ຬ) • ϝϯλϦϯάΛ௨ͯࣗ͠ͷֶशͷͨΊͷ͖͔ͬ ͚ΛಘΒΕ·͔ͨ͠ʁ (5ຬ) •
ϝϯλʔͳͲٕज़άϧʔϓ͔ΒͷධՁదͱײ͡·ͨ͠ ͔ʁ (5ຬ)
Ξϯέʔτ߲ • ϝϯλϦϯάͰྑ͔ͬͨͱ͜ΖΛڭ͍͑ͯͩ͘͞ • ϝϯλϦϯάͰؾʹͳͬͨͱ͜Ζվળͯ͠΄͍͠ͱ ͜ΖΛڭ͍͑ͯͩ͘͞ • ͦͷଞϝϯλʔʹ͍͑ͨࣄ͕͋ΕͲ͏ͧ
None
None
Ξϯέʔτ߲ͷ • ϝϯλʔࣗΛରͱ͢ΔΑ͏ͳ࣭Ͱͳ͘ɺϝ ϯλϦϯάͱ͍͏εΩϧΛରͱ͢ΔΑ͏ͳ࣭ʹ • ؾʹͳͬͨͱ͜Ζͱදݱ͢Δ͜ͱͰɺվળϑΟʔυ όοΫΛૹΓ͘͢
Ξϯέʔτ݁Ռ
ϓϥεධՁ͕84.1%
ϓϥεධՁ͕79.5%
ϓϥεධՁ͕61.4% (25%͕ධՁະܦݧ)
ޮՌͷॴײ • ϝϯλʔͷ࣮ײͱରʹɺධՁ͕ඇৗʹྑ͔ͬͨ • όΠΞε͕͋Δʹͯ͠ߴ͘ݟ͑Δ • ྑ͔ͬͨ͜ͱଟ͘ॻ͔Ε͍ͯͨ ϝϯλʔͷखԠ͑ʹӨڹΛग़ͤͨͷͰ
෭࣍తޮՌͷॴײ • ϝϯλʔͷධՁͷશମײ͕͔ͬͨ • ૬ੑͷΠϝʔδ͕ͭ͘ͳͲ • ࣍ͷϝϯλʔΈ߹ΘͤΛܾΊ͘͢ͳͬͨ
ΞδΣϯμ • ͯͳͷνʔϜԣஅͷΤϯδχΞϝϯλʔ੍ͱ • ࣮ࡍʹͲͷΑ͏ͳ՝͕͔͋ͬͨ • ͲͷΑ͏ʹվળ͔ͨ͠ • վળࢪࡦʹΑΓ࠷ऴతʹͲ͏ͳ͔ͬͨ
࠷ऴతͳޮՌ
3ͭࢪࡦΛߦͬͯ݁ہ ՝վળͨ͠ͷʁ
࠶ϝϯλʔʹΞϯέʔτ • γχΞͷׂ͝ͱͷखԠ͑Λڭ͍͑ͯͩ͘͞(5ຬ) • ղܾࢧԉ • ࢧԉ • దͳධՁ •
ͦΕͧΕͷࢪࡦͷཱͪ߹͍
ͦΕͧΕͷׂͷखԠ͑ʁ
ղܾࢧԉ
ղܾࢧԉ
ࢧԉ
ࢧԉ
దͳධՁ
దͳධՁ
શମతʹ্ʂ ΑΓޮՌతʹग़དྷͨͱ࣮ײ ) Ξϯέʔτͷগͳ͍ͷͰɺ ఆྔతʹՃݕূඞཁ
ࢪࡦͷཱͪ߹͍ʁ
None
None
໌จԽࢪࡦͷ • γχΞީิͷϝϯςΟʔʹγχΞΤϯδχΞͱͳʹ ͔ͱઆ໌͢Δͷʹʹཱͪ·ͨ͠ • ࠓ·Ͱಓ͠Δ͕ಛʹͳ͔ͬͨͷͰ৭ʑඋ͞Εͯ Δ͜ͱ͕໌֬ʹͳͬͨ
None
ϝϯλʔάϧʔϓࢪࡦͷ • ΈΜͳͰղܾ͍ͯ͠Δײ͕ग़ͨ • άϧʔϓձΞυόΠεΒ͑ͯॿ͔Γ·ͨ͠ • ଞͷγχΞͷ׆ಈ͕ݟཱ͑ͯͬͨ • ੋඇࠓޙଓ͚ͯཉ͍͠ •
ղܾ૬ஊʹΑΔࣗવͳݟڞ༗ʹͳͬͨ(͜Ε ͷͰ͢)
None
ϑΟʔυόοΫࢪࡦͷ • ͳʹ͔͠Βͷߩݙ͕Ͱ͖͍ͯͨ͜ͱ͕Θ͔ͬͨ ͷͰΑ͔ͬͨͰ͢ • ϑΟʔυόοΫΞϯέʔτɼ͔ͨ͠ʹͱࢥ͑ ΔճΛΒ͑·ͨ͠ • ͷϑΟʔυόοΫඇৗʹࢀߟʹͳΓ·͠ ͨ
ಛʹάϧʔϓձͱϑΟʔυόοΫ͕ߴධՁɻ ͜ΕΒͷࢪࡦΛͬͯΑ͔ͬͨ
ϝϯλʔ૿ͤͨ • උͨ͜͠ͱͰಋೖ͘͢͠ͳͬͨ • ͜ͷҰؒͰ8ਓ૿һ • ϝϯλʔάϧʔϓ4άϧʔϓʹ εέʔϧՄೳʹ
࠷ޙʹ: ࠓճͷࢪࡦΛ ௨ͯ͠ͷؾ͖
Ϛωʔδϟ͚ʹ ͨΓલͷ͜ͱΛ͢Δ
ϝϯόʔ͚ʹͨΓલͷ͜ͱ͔Γ • ϚχϡΞϧɺਪનॻ੶ɺಋೖձ • ׂ໌ࣔɺಋೖΛஸೡʹ͢ΔͷͨΓલ • ϝϯλʔάϧʔϓձ • ԣͷͭͳ͕ΓΛ࡞ΓશһͰεΩϧΞοϓ͢ΔͷͨΓલ •
ϑΟʔυόοΫΞϯέʔτ • ఆظతͳϑΟʔυόοΫ͔Βվળ͢ΔͷͨΓલ
ͨΓલͳͷʹɺͳ͔ͥ Ϛωʔδϟ͚ʹग़དྷͯͳ͔ͬͨ ͳΜͱͳ͘େৎͰ͠ΐ ͱࢥͬͯ͠·͍ͬͯͨ
͔͠͠·ͣͨΓલͷ͜ͱΛ ͢Δ͚ͩͰޮՌ͕͋ͬͨ
ըظతͳͷͷಋೖ͚ͩͰͳ͘ ݩͷඋେࣄ
ࠓޙҰͭͣͭվળ͠ ͍͖͍ͯͨ
ʲPRʳੵۃ࠾༻தͰ͢ʂ • ΤϯδχΞ͔Β։ൃϚωʔδϟʹͳͬͨਓ͍·͢ʂ • ಇ͘Πϝʔδ: https://speakerdeck.com/yashigani/hatena-engineer-seminar-number-10 • ͪΖΜΤϯδχΞͱͯ͠όϦόϦΓ͍ͨਓʂ • ڵຯ͕͋Ε͔͚͍ͯͩ͘͞(TwitterͰՄ)
͝ਗ਼ௌ͋Γ͕ͱ͏ ͍͟͝·ͨ͠
Any Question?